1
|
Kwiatos N, Steinbüchel A. Cyanophycin Modifications-Widening the Application Potential. Front Bioeng Biotechnol 2021; 9:763804. [PMID: 34738009 PMCID: PMC8560796 DOI: 10.3389/fbioe.2021.763804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
A circular bioeconomy approach is essential to slowing down the fearsome ongoing climate change. Replacing polymers derived from fossil fuels with biodegradable biobased polymers is one crucial part of this strategy. Cyanophycin is a polymer consisting of amino acids produced by cyanobacteria with many potential applications. It consists mainly of aspartic acid and arginine, however, its composition may be changed at the production stage depending on the conditions of the polymerization reaction, as well as the characteristics of the enzyme cyanophycin synthetase, which is the key enzyme of catalysis. Cyanophycin synthetases from many sources were expressed heterologously in bacteria, yeast and plants aiming at high yields of the polymer or at introducing different amino acids into the structure. Furthermore, cyanophycin can be modified at the post-production level by chemical and enzymatic methods. In addition, cyanophycin can be combined with other compounds to yield hybrid materials. Although cyanophycin is an attractive polymer for industry, its usage as a sole material remains so far limited. Finding new variants of cyanophycin may bring this polymer closer to real-world applications. This short review summarizes all modifications of cyanophycin and its variants that have been reported within the literature until now, additionally addressing their potential applications.
Collapse
Affiliation(s)
- Natalia Kwiatos
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
2
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
3
|
Microbial production of cyanophycin: From enzymes to biopolymers. Biotechnol Adv 2019; 37:107400. [PMID: 31095967 DOI: 10.1016/j.biotechadv.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 11/20/2022]
Abstract
Cyanophycin is an attractive biopolymer with chemical and material properties that are suitable for industrial applications in the fields of food, medicine, cosmetics, nutrition, and agriculture. For efficient production of cyanophycin, considerable efforts have been exerted to characterize cyanophycin synthetases (CphAs) and optimize fermentations and downstream processes. In this paper, we review the characteristics of diverse CphAs from cyanobacteria and non-cyanobacteria. Furthermore, strategies for cyanophycin production in microbial strains, including Escherichia coli, Pseudomonas putida, Ralstonia eutropha, Rhizopus oryzae, and Saccharomyces cerevisiae, heterologously expressing different cphA genes are reviewed. Additionally, chemical and material properties of cyanophycin and its derivatives produced through biological or chemical modifications are reviewed in the context of their industrial applications. Finally, future perspectives on microbial production of cyanophycin are provided to improve its cost-effectiveness.
Collapse
|
4
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
5
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
6
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
7
|
Kumar MBA, Gao Y, Shen W, He L. Valorisation of protein waste: An enzymatic approach to make commodity chemicals. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1532-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Mika LT, Cséfalvay E, Horváth IT. The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Cheng J, Ding L, Xia A, Lin R, Li Y, Zhou J, Cen K. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. BIORESOURCE TECHNOLOGY 2015; 179:13-19. [PMID: 25514397 DOI: 10.1016/j.biortech.2014.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 05/07/2023]
Abstract
The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%).
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Lingkan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ao Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Richen Lin
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN BIOTECHNOLOGY 2014; 2014:463074. [PMID: 25937989 PMCID: PMC4393053 DOI: 10.1155/2014/463074] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.
Collapse
|
11
|
Teng Y, Scott EL, Sanders JPM. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase-a means of separating amino acids for synthesizing biobased chemicals. Biotechnol Prog 2014; 30:681-8. [DOI: 10.1002/btpr.1895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Yinglai Teng
- Biobased Commodity Chemistry; Wageningen University; Bornse Weilanden 9, 6708 WG Wageningen the Netherlands
| | - Elinor L. Scott
- Biobased Commodity Chemistry; Wageningen University; Bornse Weilanden 9, 6708 WG Wageningen the Netherlands
| | - Johan P. M. Sanders
- Biobased Commodity Chemistry; Wageningen University; Bornse Weilanden 9, 6708 WG Wageningen the Netherlands
| |
Collapse
|
12
|
Guanidination of soluble lysine-rich cyanophycin yields a homoarginine-containing polyamide. Appl Environ Microbiol 2014; 80:2381-9. [PMID: 24509932 DOI: 10.1128/aem.04013-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble cyanobacterial granule polypeptide (CGP), especially that isolated from recombinant Escherichia coli strains, consists of aspartic acid, arginine, and a greater amount of lysine than that in insoluble CGP isolated from cyanobacteria or various other recombinant bacteria. In vitro guanidination of lysine side chains of soluble CGP with o-methylisourea (OMIU) yielded the nonproteinogenic amino acid homoarginine. The modified soluble CGP consisted of 51 mol% aspartate, 14 mol% arginine, and 35 mol% homoarginine. The complete conversion of lysine residues to homoarginine was confirmed by (i) nuclear magnetic resonance spectrometry, (ii) coupled liquid chromatography-mass spectrometry, and (iii) high-performance liquid chromatography. Unlike soluble CGP, this new homoarginine-containing polyamide was soluble only under acidic or alkaline conditions and was insoluble in water or at a neutral pH. Thus, it showed solubility behavior similar to that of the natural insoluble polymer isolated from cyanobacteria, consisting of aspartic acid and arginine only. Polyacrylamide gel electrophoresis revealed similar degrees of polymerization of the native (12- to 40-kDa) and modified (10- to 35-kDa) polymers. This study showed that the chemical structure and properties of a biopolymer could be changed by in vitro introduction of a new functional group after biosynthesis of the native polymer. In addition, the modified CGP could be digested in vitro using the cyanophycinase from Pseudomonas alcaligenes strain DIP1, yielding a new dipeptide consisting of aspartate and homoarginine.
Collapse
|
13
|
Auvergne R, Caillol S, David G, Boutevin B, Pascault JP. Biobased Thermosetting Epoxy: Present and Future. Chem Rev 2013; 114:1082-115. [DOI: 10.1021/cr3001274] [Citation(s) in RCA: 679] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rémi Auvergne
- Institut Charles
Gerhardt UMR CNRS 5253 Laboratoire Ingénierie et Architecture
Macromoléculaire, Ecole Nationale Supérieure de Chimie
de Montpellier, 8 rue de l’Ecole
Normale, 34296 Montpellier Cedex 05, France
| | - Sylvain Caillol
- Institut Charles
Gerhardt UMR CNRS 5253 Laboratoire Ingénierie et Architecture
Macromoléculaire, Ecole Nationale Supérieure de Chimie
de Montpellier, 8 rue de l’Ecole
Normale, 34296 Montpellier Cedex 05, France
| | - Ghislain David
- Institut Charles
Gerhardt UMR CNRS 5253 Laboratoire Ingénierie et Architecture
Macromoléculaire, Ecole Nationale Supérieure de Chimie
de Montpellier, 8 rue de l’Ecole
Normale, 34296 Montpellier Cedex 05, France
| | - Bernard Boutevin
- Institut Charles
Gerhardt UMR CNRS 5253 Laboratoire Ingénierie et Architecture
Macromoléculaire, Ecole Nationale Supérieure de Chimie
de Montpellier, 8 rue de l’Ecole
Normale, 34296 Montpellier Cedex 05, France
| | - Jean-Pierre Pascault
- INSA-Lyon, IMP,
UMR5223, F-69621, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| |
Collapse
|
14
|
Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2013; 114:1871-908. [DOI: 10.1021/cr400309c] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan
67, 2628
BC Delft, The Netherlands
| |
Collapse
|
15
|
Increased lysine content is the main characteristic of the soluble form of the polyamide cyanophycin synthesized by recombinant Escherichia coli. Appl Environ Microbiol 2013; 79:4474-83. [PMID: 23686266 DOI: 10.1128/aem.00986-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanophycin, a polyamide of cyanobacterial or noncyanobacterial origin consisting of aspartate, arginine, and lysine, was synthesized in different recombinant strains of Escherichia coli expressing cphA from Synechocystis sp. strain PCC 6308 or PCC 6803, Anabaena sp. strain PCC 7120, or Acinetobacter calcoaceticus ADP1. The molar aspartate/arginine/lysine ratio of the water-soluble form isolated from a recombinant strain expressing CphA6308 was 1:0.5:0.5, with a lysine content higher than any ever described before. The water-insoluble form consisted instead of mainly aspartate and arginine residues and had a lower proportion of lysine, amounting to a maximum of only 5 mol%. It could be confirmed that the synthesis of soluble cyanobacterial granule polypeptide (CGP) is independent of the origin of cphA. Soluble CGP isolated from all recombinant strains contained a least 17 mol% lysine. The total CGP portion of cell dry matter synthesized by CphA6308 from recombinant E. coli was about 30% (wt/wt), including 23% (wt/wt) soluble CGP, by using terrific broth complex medium for cultivation at 30°C for 72 h. Enhanced production of soluble CGP instead of its insoluble form is interesting for further application and makes recombinant E. coli more attractive as a suitable source for the production of polyaspartic acid or dipeptides. In addition, a new low-cost, time-saving, effective, and common isolation procedure for mainly soluble CGP, suitable for large-scale application, was established in this study.
Collapse
|
16
|
Yu JJ, Park KB, Kim SG, Oh SH. Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168. J Microbiol 2013; 51:222-8. [PMID: 23625224 DOI: 10.1007/s12275-013-2669-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/01/2013] [Indexed: 11/27/2022]
Abstract
The arginine-degrading and ornithine-producing enzymes arginase has been used to treat arginine-dependent cancers. This study was carried out to obtain the microbial arginase from Bacillus subtilis, one of major microorganisms found in fermented foods such as Cheonggukjang. The gene encoding arginase was isolated from B. subtilis 168 and cloned into E. coli expression plasmid pET32a. The enzyme activity was detected in the supernatant of the transformed and IPTG induced cell-extract. Arginase was purified for homogeneity from the supernatant by affinity chromatography. The specific activity of the purified arginase was 150 U/mg protein. SDS-PAGE analysis revealed the molecular size to be 49 kDa (Trix·Tag, 6×His·Tag added size). The optimum pH and temperature of the purified enzyme with arginine as the substrate were pH 8.4 and 45°C, respectively. The Km and Vmax values of arginine for the enzyme were 4.6 mM and 133.0 mM/min/mg protein respectively. These findings can contribute in the development of functional fermented foods such as Cheonggukjang with an enhanced level of ornithine and pharmaceutical products by providing the key enzyme in arginine-degradation and ornithine-production.
Collapse
Affiliation(s)
- Jin-Ju Yu
- Department of Food and Biotechnology, Woosuk University, Jeonju 565-701, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Du J, Li L, Ding X, Hu H, Lu Y, Zhou S. Isolation and characterization of a novel cyanophycin synthetase from a deep-sea sediment metagenomic library. Appl Microbiol Biotechnol 2013; 97:8619-28. [DOI: 10.1007/s00253-013-4872-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
18
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M. Valorization of Biomass: Deriving More Value from Waste. Science 2012; 337:695-9. [DOI: 10.1126/science.1218930] [Citation(s) in RCA: 1467] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Nwagu TN, Aoyagi H, Okolo BN, Yoshida S. Immobilization of a saccharifying raw starch hydrolyzing enzyme on functionalized and non-functionalized sepa beads. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Readi OK, Gironès M, Wiratha W, Nijmeijer K. On the Isolation of Single Basic Amino Acids with Electrodialysis for the Production of Biobased Chemicals. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202634v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O.M. Kattan Readi
- Membrane Science & Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - M. Gironès
- Membrane Science & Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. Wiratha
- Membrane Science & Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - K. Nijmeijer
- Membrane Science & Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Chien W, Liang C, Yu C, Lin JH, Wu H, Lin C. Glucose 1‐Phosphate Thymidylyltransferase in the Synthesis of Uridine 5′‐Diphosphate Galactose and its Application in the Synthesis ofN‐Acetyllactosamine. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei‐Ting Chien
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| | - Chien‐Fu Liang
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| | - Ching‐Ching Yu
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| | - Jian‐ Hong Lin
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| | - Haung‐Ting Wu
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| | - Chun‐Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan, Republic of China, Fax: +(886)‐3‐571‐1082; phone: (+886)‐3‐575‐3147
| |
Collapse
|
23
|
Solaiman DK, Ashby RD, Zerkowski JA. Substrate preference and oxygen requirement for cyanophycin synthesis by recombinant Escherichia coli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2011.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Meussen BJ, Weusthuis RA, Sanders JPM, de Graaff LH. Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Appl Microbiol Biotechnol 2011; 93:1167-74. [PMID: 21972133 PMCID: PMC3264852 DOI: 10.1007/s00253-011-3604-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/07/2011] [Accepted: 09/22/2011] [Indexed: 11/25/2022]
Abstract
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.
Collapse
Affiliation(s)
- Bas J. Meussen
- Valorisation of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
- Fungal Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, NL 6708 HB Wageningen, the Netherlands
| | - Ruud A. Weusthuis
- Valorisation of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johan P. M. Sanders
- Valorisation of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Leo H. de Graaff
- Fungal Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, NL 6708 HB Wageningen, the Netherlands
| |
Collapse
|
25
|
|