1
|
Hu R, Gong A, Liao L, Zheng YX, Liu X, Wu P, Li F, Yu H, Zhao J, Ye LW, Wang B, Li A. Biocatalytic aminohydroxylation of styrenes for efficient synthesis of enantiopure β-amino alcohols. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
2
|
Deng GZ, Zhou X, Yu QX, Mou XQ, An M, Cui HB, Zhou XJ, Wan NW, Li Z, Chen YZ. Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral β-Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Zhong Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Quan-Xiang Yu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Dong YL, Chong GG, Li CX, Chen Q, Pan J, Li AT, Xu JH. Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Medium-Chain Fatty Acids. Chembiochem 2022; 23:e202200063. [PMID: 35257464 DOI: 10.1002/cbic.202200063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase discovered in Sphingomonas sp. HXN200 belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C 8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n- octanoic acid (C 8:0. 1 mM) in a shorter period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C 8:0 into the high value-added product 8-hydroxyoctanoic acid.
Collapse
Affiliation(s)
- Ya-Li Dong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Gang-Gang Chong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, 130 Meilong Road, Shanghai 200237, China, 200237, Shanghai, CHINA
| | - Chun-Xiu Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Qi Chen
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Jiang Pan
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Ai-Tao Li
- Hubei University, College of Life Science, CHINA
| | - Jian-He Xu
- East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, CHINA
| |
Collapse
|
4
|
Zheng J, Meng S, Wang Q. Cascade intramolecular Prins/Friedel-Crafts cyclization for the synthesis of 4-aryltetralin-2-ols and 5-aryltetrahydro-5 H-benzo[7]annulen-7-ols. Beilstein J Org Chem 2021; 17:1481-1489. [PMID: 34239615 PMCID: PMC8239259 DOI: 10.3762/bjoc.17.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment of 2-(2-vinylphenyl)acetaldehydes or 3-(2-vinylphenyl)propanals with BF3·Et2O results in an intramolecular Prins reaction affording intermediary benzyl carbenium ions, which are then trapped by a variety of electron-rich aromatics via Friedel–Crafts alkylation. This cascade Prins/Friedel–Crafts cyclization protocol paves an expedient path to medicinally useful 4-aryltetralin-2-ol and 5-aryltetrahydro-5H-benzo[7]annulen-7-ol derivatives.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Shuyu Meng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Quanrui Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
5
|
Zeng S, Liu J, Anankanbil S, Chen M, Guo Z, Adams JP, Snajdrova R, Li Z. Amide Synthesis via Aminolysis of Ester or Acid with an Intracellular Lipase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02713] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichao Zeng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ji Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Ming Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph P. Adams
- Chemical Sciences, GSK R&D Medicines Research Centre, Gunnelswood Road, Stevenage, SG1 2NY, United Kingdom
| | - Radka Snajdrova
- Chemical Sciences, GSK R&D Medicines Research Centre, Gunnelswood Road, Stevenage, SG1 2NY, United Kingdom
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
6
|
Yang Y, Chi YT, Toh HH, Li Z. Evolving P450pyr monooxygenase for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol. Chem Commun (Camb) 2015; 51:914-7. [DOI: 10.1039/c4cc08479a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution of a P450pyr created I83M/I82T mutant as the first catalyst for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Yu Tse Chi
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Hui Hung Toh
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Zhi Li
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
7
|
Li A, Liu J, Pham SQ, Li Z. Engineered P450pyr monooxygenase for asymmetric epoxidation of alkenes with unique and high enantioselectivity. Chem Commun (Camb) 2014; 49:11572-4. [PMID: 24177733 DOI: 10.1039/c3cc46675b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triple mutant of P450pyr monooxygenase (P450pyrTM) catalysed the epoxidation of several para-substituted styrenes as the first enzyme showing high (R)-enantioselectivity and high conversion, demonstrated a broad substrate range, and showed high enantioselectivity for the epoxidation of an unconjugated 1,1-disubstituted alkene, 2-methyl-3-phenyl-1-propene, and a cyclic alkene, N-phenoxycarbonyl-1,2,5,6-tetrahydropyridine, respectively.
Collapse
Affiliation(s)
- Aitao Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| | | | | | | |
Collapse
|
8
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014; 53:3120-4. [DOI: 10.1002/anie.201311091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/09/2022]
|
9
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Wu S, Chen Y, Xu Y, Li A, Xu Q, Glieder A, Li Z. Enantioselective trans-Dihydroxylation of Aryl Olefins by Cascade Biocatalysis with Recombinant Escherichia coli Coexpressing Monooxygenase and Epoxide Hydrolase. ACS Catal 2014. [DOI: 10.1021/cs400992z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shuke Wu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Singapore-MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| | - Yongzheng Chen
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Yi Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Aitao Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Qisong Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Anton Glieder
- Institute of Molecular
Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Zhi Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Singapore-MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| |
Collapse
|
11
|
Klatte S, Lorenz E, Wendisch VF. Whole cell biotransformation for reductive amination reactions. Bioengineered 2013; 5:56-62. [PMID: 24406456 DOI: 10.4161/bioe.27151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration.
Collapse
Affiliation(s)
- Stephanie Klatte
- Chair of Genetics of Prokaryotes; Faculty of Biology & CeBiTec; Bielefeld University; Bielefeld, Germany
| | - Elisabeth Lorenz
- Chair of Genetics of Prokaryotes; Faculty of Biology & CeBiTec; Bielefeld University; Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes; Faculty of Biology & CeBiTec; Bielefeld University; Bielefeld, Germany
| |
Collapse
|
12
|
Akagawa K, Sen J, Kudo K. Peptide-Catalyzed Regio- and Enantioselective Reduction of α,β,γ,δ-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Akagawa K, Sen J, Kudo K. Peptide-Catalyzed Regio- and Enantioselective Reduction of α,β,γ,δ-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2013; 52:11585-8. [DOI: 10.1002/anie.201305004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 12/25/2022]
|
14
|
Pham SQ, Gao P, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 2012; 110:363-73. [PMID: 22886996 DOI: 10.1002/bit.24632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
E. coli (P450pyrTM-GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g⁻¹ cdw) for the biohydroxylation of N-benzylpyrrolidine 1 and a GDH activity of 106 U g⁻¹ protein. The E. coli cells were used as efficient biocatalysts for highly regio- and stereoselective hydroxylation of alicyclic substrates at non-activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N-benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio- and stereoselectivity, giving (S)-N-benzyl-3-hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM-GDH) was found to be highly regio- and stereoselective for the hydroxylation of N-benzylpyrrolidin-2-one 3, improving the regioselectivity from 90% of the wild-type P450pyr to 100% and giving (S)-N-benzyl-4-hydroxylpyrrolidin-2-one 4 in 99% ee as the sole product. A high activity of 15.5 U g⁻¹ cdw was achieved and (S)-4 was obtained in 19.4 mM. E. coli (P450pyrTM-GDH) was also found to be highly regio- and stereoselective for the hydroxylation of N-benzylpiperidin-2-one 5, increasing the ee of the product (S)-N-benzyl-4-hydroxy-piperidin-2-one 6 to 94% from 33% of the wild-type P450pyr. A high activity of 15.8 U g⁻¹ cdw was obtained and (S)-6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM-GDH) represents the most productive system known thus far for P450-catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM-GDH) provide with simple and useful syntheses of (S)-2, (S)-4, and (S)-6 that are valuable pharmaceutical intermediates and difficult to prepare.
Collapse
Affiliation(s)
- Son Q Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
15
|
Pham SQ, Pompidor G, Liu J, Li XD, Li Z. Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom. Chem Commun (Camb) 2012; 48:4618-20. [DOI: 10.1039/c2cc30779k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
|