1
|
Kovalenko V, Kotok V, Murashevych B. Layered Double Hydroxides as the Unique Product of Target Ionic Construction for Energy, Chemical, Foods, Cosmetics, Medicine and Ecology Applications. CHEM REC 2024; 24:e202300260. [PMID: 37847884 DOI: 10.1002/tcr.202300260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Layered Double Hydroxide (LDH) is an α-modification of the M-host (M2+ ) hydroxide, in which some part of the M-host cations is replaced by M-guest cations (M3+ or M4+ ). The emerging excess positive charge is compensated by the intercalation of anions into the interlayer space, which also contains water molecules. LDHs exhibit anion exchange properties. Targeted ionic design of LDHs via combining three components (M-host, M-guest cations, intercalated anions) allows the creation of a very wide range of highly efficient electrochemical, electrocatalytic, electrochromic substances, catalysts, ion exchangers, sorbents, color pigments, pharmacological drugs, food, and cosmetic additives. In this review, the structure and areas of application of LDHs are considered from the perspective of the targeted ionic design of a substance for a specific application.
Collapse
Affiliation(s)
- Vadym Kovalenko
- Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics, Ukrainian State University of Chemical Technology, Gagarina ave., 8, 49015, Dnipro, Ukraine
| | - Valerii Kotok
- Department of Processes, Apparatus and General Chemical Technology, Ukrainian State University of Chemical Technologies, Gagarina ave., 8, 49015, Dnipro, Ukraine
| | - Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Volodymyra Vernadskoho str., 9, 49044, Dnipro, Ukraine
| |
Collapse
|
2
|
do Amaral LFM, Pilissão C, Krieger N, Wypych F. Pseudomonas cepacia lipase immobilized on Zn 2Al layered double hydroxides: Evaluation of different methods of immobilization for the kinetic resolution of ( R,S)-1-phenylethanol. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2181047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
| | - Cristiane Pilissão
- Department of Chemistry and Biology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Nadia Krieger
- Postgraduate Program in Chemistry, Federal University of Paraná, Curitiba, Brazil
- Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Fernando Wypych
- Postgraduate Program in Chemistry, Federal University of Paraná, Curitiba, Brazil
- Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Co-Immobilization of D-Amino Acid Oxidase, Catalase, and Transketolase for One-Pot, Two-Step Synthesis of L-Erythrulose. Catalysts 2023. [DOI: 10.3390/catal13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Here, we present an immobilized enzyme cascade in a basket-type reactor allowing a one-pot, two-step enzymatic synthesis of L-erythrulose from D-serine and glycolaldehyde. Three enzymes, D-amino acid oxidase from Rhodotorula gracilis (DAAORg), catalase from bovine liver (CAT), and transketolase from Geobacillus stearothermophilus (TKgst) were covalently immobilized on silica monolithic pellets, characterized by an open structure of interconnected macropores and a specific surface area of up to 300 m2/g. Three strategies were considered: (i) separate immobilization of enzymes on silica supports ([DAAO][CAT][TK]), (ii) co-immobilization of two of the three enzymes followed by the third ([DAAO+CAT][TK]), and (iii) co-immobilization of all three enzymes ([DAAO+CAT+TK]). The highest L-erythrulose concentrations were observed for the co-immobilization protocols (ii) and (iii) (30.7 mM and 29.1 mM, respectively). The reusability study showed that the best combination was [DAAO + CAT][TK], which led to the same level of L-erythrulose formation after two reuse cycles. The described process paves the way for the effective synthesis of a wide range of α-hydroxyketones from D-serine and suitable aldehydes.
Collapse
|
4
|
Nauton L, Hecquet L, Théry V. QM/MM Study of Human Transketolase: Thiamine Diphosphate Activation Mechanism and Complete Catalytic Cycle. J Chem Inf Model 2021; 61:3502-3515. [PMID: 34161071 DOI: 10.1021/acs.jcim.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational model for human transketolase was proposed, showing that thiamine diphosphate activation was based on His110 in place of His481 reported in yeast transketolase. In addition, a complete catalytic reaction pathway was investigated using d-xylulose-5-phosphate and d-ribose-5-phosphate as substrates, showing at every step a perfect superimposition of our model with high-resolution crystallographic structures 3MOS, 4KXV, and 4KXX. This study shows that H2N4' of the active thiamine diphosphate "V form" no longer has a self-activating role but allows self-stabilization of the cofactor and of the Breslow intermediate. These advances in our knowledge of the human transketolase mechanism offer interesting prospects for the design of new drugs, this enzyme being involved in several diseases, and for a better understanding of the reactions catalyzed by transketolases from other sources.
Collapse
Affiliation(s)
- Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Vincent Théry
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Heravi MM, Mohammadi P. Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview. Mol Divers 2021; 26:569-587. [PMID: 33392966 DOI: 10.1007/s11030-020-10170-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Layered double hydroxides (LDHs) are recognized as two-dimensional (2D) clay materials, which comprise the interlayer anions and host layers with a positive charge (brucite-like M(OH)6 octahedral). They have been used as effective and eco-friendly heterogeneous catalytic systems in cross-coupling reactions. In this review, we try to underscore the applications of (LDHs) as an efficient and green catalyst in some important name reactions, namely Suzuki, Heck, Sonogashira, and Ullmann cross-coupling reactions leading to carbon-carbon bond formations.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, P.O. Box 1993891176, Tehran, Iran.
| | - Pourya Mohammadi
- Department of Chemistry, School of Science, Alzahra University, Vanak, P.O. Box 1993891176, Tehran, Iran
| |
Collapse
|
6
|
Ocal N, L’enfant M, Charmantray F, Pollegioni L, Martin J, Auffray P, Collin J, Hecquet L. d-Serine as a Key Building Block: Enzymatic Process Development and Smart Applications within the Cascade Enzymatic Concept. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nazim Ocal
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Juliette Martin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Pascal Auffray
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Jérôme Collin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Marsden SR, Mestrom L, McMillan DGG, Hanefeld U. Thermodynamically and Kinetically Controlled Reactions in Biocatalysis – from Concepts to Perspectives. ChemCatChem 2019. [DOI: 10.1002/cctc.201901589] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stefan R. Marsden
- Biokatalyse, Afdeling BiotechnologieTechnische Universiteit Delft Van der Maasweg 9 Delft 2629HZ The Netherlands
| | - Luuk Mestrom
- Biokatalyse, Afdeling BiotechnologieTechnische Universiteit Delft Van der Maasweg 9 Delft 2629HZ The Netherlands
| | - Duncan G. G. McMillan
- Biokatalyse, Afdeling BiotechnologieTechnische Universiteit Delft Van der Maasweg 9 Delft 2629HZ The Netherlands
| | - Ulf Hanefeld
- Biokatalyse, Afdeling BiotechnologieTechnische Universiteit Delft Van der Maasweg 9 Delft 2629HZ The Netherlands
| |
Collapse
|
8
|
Prejanò M, Medina FE, Fernandes PA, Russo N, Ramos MJ, Marino T. The Catalytic Mechanism of Human Transketolase. Chemphyschem 2019; 20:2881-2886. [PMID: 31489766 DOI: 10.1002/cphc.201900650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Indexed: 01/10/2023]
Abstract
We have computationally determined the catalytic mechanism of human transketolase (hTK) using a cluster model approach and density functional theory calculations. We were able to determine all the relevant structures, bringing solid evidences to the proposed experimental mechanism, and to add important detail to the structure of the transition states and the energy profile associated with catalysis. Furthermore, we have established the existence of a crucial intermediate of the catalytic cycle, in agreement with experiments. The calculated data brought new insights to hTK's catalytic mechanism, providing free-energy values for the chemical reaction, as well as adding atomistic detail to the experimental mechanism.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Fabiola Estefany Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Maria Joao Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| |
Collapse
|
9
|
L'enfant M, Bruna F, Lorillière M, Ocal N, Fessner W, Pollegioni L, Charmantray F, Hecquet L. One‐Pot Cascade Synthesis of (3 S)‐Hydroxyketones Catalyzed by Transketolase viaHydroxypyruvate Generated in Situfrom d‐Serine by d‐Amino Acid Oxidase. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mélanie L'enfant
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Felipe Bruna
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Marion Lorillière
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Nazim Ocal
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt 64287 Darmstadt Germany
| | - Loredano Pollegioni
- Department of Biotechnology and Life SciencesUniversità degli Studi dell'Insubria Varese Italy
| | - Franck Charmantray
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
10
|
Aymard CMG, Halma M, Comte A, Mousty C, Prévot V, Hecquet L, Charmantray F, Blum LJ, Doumèche B. Innovative Electrochemical Screening Allows Transketolase Inhibitors to Be Identified. Anal Chem 2018; 90:9241-9248. [PMID: 29950093 DOI: 10.1021/acs.analchem.8b01752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transketolases (TKs) are ubiquitous thiamine pyrophosphate (TPP)-dependent enzymes of the nonoxidative branch of the pentose phosphate pathway. They are considered as interesting therapeutic targets in numerous diseases and infections (e.g., cancer, tuberculosis, malaria), for which it is important to find specific and efficient inhibitors. Current TK assays require important amounts of enzyme, are time-consuming, and are not specific. Here, we report a new high throughput electrochemical assay based on the oxidative trapping of the TK-TPP intermediate. After electrode characterization, the enzyme loading, electrochemical protocol, and substrate concentration were optimized. Finally, 96 electrochemical assays could be performed in parallel in only 7 min, which allows a rapid screening of TK inhibitors. Then, 1360 molecules of an in-house chemical library were screened and one early lead compound was identified to inhibit TK from E. coli with an IC50 of 63 μM and an inhibition constant ( KI) of 3.4 μM. The electrochemical assay was also used to propose an inhibition mechanism.
Collapse
Affiliation(s)
- Chloé M G Aymard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Matilte Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Arnaud Comte
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Christine Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Vanessa Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Franck Charmantray
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Loïc J Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| |
Collapse
|
11
|
Assembly of nitroreductase and layered double hydroxides toward functional biohybrid materials. J Colloid Interface Sci 2018; 533:71-81. [PMID: 30145442 DOI: 10.1016/j.jcis.2018.07.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022]
Abstract
The development of new multifunctional materials integrating catalytically active and selective biomolecules, such as enzymes, as well as easily removable and robust inorganic supports that allow their use and reuse, is a subject of ongoing attention. In this work, the nitroreductase NfrA2/YncD (NR) from Bacillus megaterium Mes11 strain was successfully immobilized by adsorption and coprecipitation on layered double hydroxide (LDH) materials with different compositions (MgAl-LDH and ZnAl-LDH), particle sizes and morphologies, and using different enzyme/LDH mass ratios (Q). The materials were characterized and the immobilization and catalytic performance of the biohybrids were studied and optimized. The nitroreductase-immobilized on the nanosized MgAl-LDH displayed the best catalytic performance with 42-46% of catalytic retention and>80% of immobilization yield at saturation values of enzyme loading Cs ≈ 0.6 g NR/g LDH (Q = 0.8). The adsorption process displayed high enzyme-LDH affinity interactions yielding to a stable biohybrid material. The increase in the amount of enzyme loading favoured the catalytic performance of the biohybrid due to the better preservation of the native conformation. The biohybrid was reused several times with partial activity retention after 4 cycles. In addition, the biohybrid was successfully dried maintaining the catalytic activity for several weeks when it was stored in its dry form. Finally, thin films of NR@LDH biohybrid deposited on glassy carbon electrodes were evaluated as a modified electrode applied for nitro-compound detection. The results show that these biohybrids can be used in biotechnology applications to efficiently detect compounds such as dinitrotoluene. The search for new non-hazardous chemical designs preventing or reducing the use of aggressive chemical processes for human being and the environment is the common philosophy within sustainable chemistry.
Collapse
|
12
|
Zhang S, Deng Q, Li Y, Zheng M, Wan C, Zheng C, Tang H, Huang F, Shi J. Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172368. [PMID: 30110464 PMCID: PMC6030335 DOI: 10.1098/rsos.172368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The high catalytic activity, specificity and stability of immobilized lipase have been attracting great interest. How to reduce the cost of support materials has always been a hot topic in this field. Herein, for the development of low-cost immobilized lipase, we demonstrate an amphiphilic polyvinylpyrrolidone (PVP) grafted on silicone particle (SP) surface materials (SP-PVP) with a rational design based on interfacial activation and solution polymerization. Meanwhile, hydrophilic pristine SP and hydrophobic polystyrene-corded silicone particles (SP-Pst) were also prepared for lipase immobilization. SP-PVP was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetry. Our results indicated that the lipase loading amount on the SP-PVP composites was about 215 mg of protein per gram. In the activity assay, the immobilized lipase SP-PVP@CRL exhibited higher catalysis activity and better thermostability and reusability than SP@CRL and SP-Pst@CRL. The immobilized lipase retained more than 54% of its initial activity after 10 times of re-use and approximately trended to a steady rate in the following cycles. By introducing the interesting amphiphilic polymer to this cheap and easily obtained SP surface, the relative performance of the immobilized lipase can be significantly improved, facilitating interactions between the low-cost support materials and lipase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Shi
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China
| |
Collapse
|
13
|
Forano C, Bruna F, Mousty C, Prevot V. Interactions between Biological Cells and Layered Double Hydroxides: Towards Functional Materials. CHEM REC 2018. [PMID: 29517856 DOI: 10.1002/tcr.201700102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials. The interactions between the two components are described with a peculiar attention to the adsorption, biocompatibilization, LDH layer internalization, antifouling and antimicrobial properties. The most significant achievements including authors' results, involving biological cells and LDH assemblies in waste water treatment, bioremediation and bioenergy generation are specifically addressed.
Collapse
Affiliation(s)
- Claude Forano
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Felipe Bruna
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Christine Mousty
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Vanessa Prevot
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| |
Collapse
|
14
|
Halma M, Doumèche B, Hecquet L, Prévot V, Mousty C, Charmantray F. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate. Biosens Bioelectron 2017; 87:850-857. [DOI: 10.1016/j.bios.2016.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
|
15
|
Richter C, Berndt F, Kunde T, Mahrwald R. Decarboxylative Cascade Reactions of Dihydroxyfumaric Acid: A Preparative Approach to the Glyoxylate Scenario. Org Lett 2016; 18:2950-3. [DOI: 10.1021/acs.orglett.6b01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Celin Richter
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Falko Berndt
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Tom Kunde
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| |
Collapse
|
16
|
Nauton L, Hélaine V, Théry V, Hecquet L. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method. Biochemistry 2016; 55:2144-52. [PMID: 26998737 DOI: 10.1021/acs.biochem.5b00787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.
Collapse
Affiliation(s)
- Lionel Nauton
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Virgil Hélaine
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Vincent Théry
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Laurence Hecquet
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| |
Collapse
|
17
|
Mahdi R, Guérard-Hélaine C, Laroche C, Michaud P, Prévot V, Forano C, Lemaire M. Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Ali G, Moreau T, Forano C, Mousty C, Prevot V, Charmantray F, Hecquet L. Chiral Polyol Synthesis Catalyzed by a Thermostable Transketolase Immobilized on Layered Double Hydroxides in Ionic liquids. ChemCatChem 2015. [DOI: 10.1002/cctc.201500524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ghina Ali
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Thomas Moreau
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Claude Forano
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Christine Mousty
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Vanessa Prevot
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Franck Charmantray
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Laurence Hecquet
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| |
Collapse
|
19
|
Halma M, Mousty C, Forano C, Sancelme M, Besse-Hoggan P, Prevot V. Bacteria encapsulated in layered double hydroxides: towards an efficient bionanohybrid for pollutant degradation. Colloids Surf B Biointerfaces 2014; 126:344-50. [PMID: 25497161 DOI: 10.1016/j.colsurfb.2014.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/03/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
A soft chemical process was successfully used to immobilize Pseudomonas sp. strain ADP (ADP), a well-known atrazine (herbicide) degrading bacterium, within a Mg2Al-layered double hydroxide host matrix. This approach is based on a simple, quick and ecofriendly direct coprecipitation of metal salts in the presence of a colloidal suspension of bacteria in water. It must be stressed that by this process the mass ratio between inorganic and biological components was easily tuned ranging from 2 to 40. This ratio strongly influenced the biological activity of the bacteria towards atrazine degradation. The better results were obtained for ratios of 10 or lower, leading to an enhanced atrazine degradation rate and percentage compared to free cells. Moreover the biohybrid material maintained this biodegradative activity after four cycles of reutilization and 3 weeks storage at 4°C. The ADP@MgAl-LDH bionanohybrid materials were completely characterized by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis and scanning and transmission electronic microscopy (SEM and TEM) evidencing the successful immobilization of ADP within the inorganic matrix. This synthetic approach could be readily extended to other microbial whole-cell immobilization of interest for new developments in biotechnological systems.
Collapse
Affiliation(s)
- Matilte Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Christine Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Claude Forano
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Martine Sancelme
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Pascale Besse-Hoggan
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Vanessa Prevot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France.
| |
Collapse
|
20
|
Touisni N, Charmantray F, Helaine V, Forano C, Hecquet L, Mousty C. Optimized immobilization of transketolase from E. coli in MgAl-layered double hydroxides. Colloids Surf B Biointerfaces 2013; 112:452-9. [DOI: 10.1016/j.colsurfb.2013.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
21
|
|
22
|
Costantino U, Leroux F, Nocchetti M, Mousty C. LDH in Physical, Chemical, Biochemical, and Life Sciences. DEVELOPMENTS IN CLAY SCIENCE 2013. [DOI: 10.1016/b978-0-08-098259-5.00026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Ranoux A, Karmee SK, Jin J, Bhaduri A, Caiazzo A, Arends IWCE, Hanefeld U. Enhancement of the Substrate Scope of Transketolase. Chembiochem 2012; 13:1921-31. [DOI: 10.1002/cbic.201200240] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/12/2022]
|
24
|
Touati S, Mansouri H, Bengueddach A, de Roy A, Forano C, Prevot V. Nanostructured layered double hydroxide aerogels with enhanced adsorption properties. Chem Commun (Camb) 2012; 48:7197-9. [DOI: 10.1039/c2cc31817b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|