1
|
Wang L, Shu S, Lv L, Li Z. Copper-catalyzed remote trifluoromethylthiolation-peroxidation of unactivated alkenes via 1,5-hydrogen atom transfer. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Wang L, Ma Y, Jiang Y, Lv L, Li Z. A Mn-catalyzed remote C(sp 3)-H bond peroxidation triggered by radical trifluoromethylation of unactivated alkenes. Chem Commun (Camb) 2021; 57:7846-7849. [PMID: 34278408 DOI: 10.1039/d1cc03295j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A manganese-catalyzed radical relay strategy for the remote trifluoromethylation-peroxidation of unactivated alkenes is disclosed. The electrophilic CF3 group was added to the C[double bond, length as m-dash]C double bonds to afford remote C-centered radicals upon 1,5-HAT, which could be efficiently trapped by Mnn+1OOBu-t species to deliver 1,6-difunctionalized products selectively under mild conditions. t-BuOOH serves as both the oxidant and the peroxy precursor in this transformation.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yuhang Jiang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
4
|
Wang J, Bao X, Wang J, Huo C. Peroxidation of 3,4-dihydro-1,4-benzoxazin-2-ones. Chem Commun (Camb) 2020; 56:3895-3898. [PMID: 32134057 DOI: 10.1039/c9cc09778c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sp3-C-H peroxidation of 3,4-dihydro-1,4-benzoxazin-2-ones was achieved under mild and simple catalyst-free reaction conditions. A range of biologically important alkylated benzoxazinone peroxides are synthesized in high yield with a good functional group tolerance. The C(sp3)-OO bond was constructed efficiently and could be further converted into C(sp3)-C(sp3), C(sp3)-C(sp2), C(sp3)-C(sp), C-P and C[double bond, length as m-dash]O bonds by late-stage functional group transformations.
Collapse
Affiliation(s)
- Jie Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | |
Collapse
|
5
|
Zhang J, Xiao D, Tan H, Liu W. Highly Selective Synthesis of 2- tert-Butoxy-1-Arylethanones via Copper(I)-Catalyzed Oxidation/ tert-Butoxylation of Aryl Olefins with TBHP. J Org Chem 2020; 85:3929-3935. [PMID: 32052627 DOI: 10.1021/acs.joc.9b03156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A practical and environmentally friendly protocol for the selective oxidation of aryl olefins to arylethanone derivatives by using a Cu(I) catalyst and tert-butyl hydroperoxide (TBHP) has been developed. A series of 2-tert-butoxy-1-arylethanones were obtained in moderate to good yields under mild conditions with high selectivity. In this method, TBHP acts not only as an oxidant but also as the tert-butoxy and carbonyl oxygen sources. This enables one-step oxidation/tert-butoxylation. Various allyl peroxides were also synthesized from allyl substrates.
Collapse
Affiliation(s)
- Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Duoduo Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Hua Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Weibing Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| |
Collapse
|
6
|
Bityukov OV, Vil' VA, Sazonov GK, Kirillov AS, Lukashin NV, Nikishin GI, Terent'ev AO. Kharasch reaction: Cu-catalyzed and non-Kharasch metal-free peroxidation of barbituric acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Geng S, Xiong B, Zhang Y, Zhang J, He Y, Feng Z. Thiyl radical promoted iron-catalyzed-selective oxidation of benzylic sp3 C–H bonds with molecular oxygen. Chem Commun (Camb) 2019; 55:12699-12702. [DOI: 10.1039/c9cc06584a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A ligand-free iron-catalyzed method for the oxygenation of benzylic sp3 C–H bonds by molecular oxygen (1 atm) using a thiyl radical as a cocatalyst has been developed.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| | - Baojian Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| | - Yun Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- P. R. China
| |
Collapse
|
8
|
Faisca Phillips AM, Pombeiro AJL. Recent Developments in Transition Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of Ethers and Thioethers. ChemCatChem 2018. [DOI: 10.1002/cctc.201800582] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
9
|
Chen WT, Bao WH, Ying WW, Zhu WM, Liang H, Wei WT. Copper-Promoted Tandem Radical Reaction of 2-Oxindoles with Formamides: Facile Synthesis of Unsymmetrical Urea Derivatives. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wei-Wei Ying
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ming Zhu
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| |
Collapse
|
10
|
Chaudhari MB, Moorthy S, Patil S, Bisht GS, Mohamed H, Basu S, Gnanaprakasam B. Iron-Catalyzed Batch/Continuous Flow C–H Functionalization Module for the Synthesis of Anticancer Peroxides. J Org Chem 2018; 83:1358-1368. [DOI: 10.1021/acs.joc.7b02854] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Suresh Moorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sohan Patil
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Haneef Mohamed
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
11
|
Wen WH, Xie AN, Wang HH, Zhang DX, Ali A, Ying X, Liu HY. Iron porphyrin-catalyzed C(SP3) -H activation for the formation of C O bond via cross-dehydrogenative coupling of cycloether and aromatic acid. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Lan Y, Chang XH, Fan P, Shan CC, Liu ZB, Loh TP, Xu YH. Copper-Catalyzed Silylperoxidation Reaction of α,β-Unsaturated Ketones, Esters, Amides, and Conjugated Enynes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02754] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Lan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xi-Hao Chang
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cui-Cui Shan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Bai Liu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Advanced Synthesis, Jiangsu National Synergetic Innovation Center
for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637616
| | - Yun-He Xu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Xia Q, Wang Q, Yan C, Dong J, Song H, Li L, Liu Y, Wang Q, Liu X, Song H. Merging Photoredox with Brønsted Acid Catalysis: The Cross-Dehydrogenative C−O Coupling for sp3
C−H Bond Peroxidation. Chemistry 2017; 23:10871-10877. [DOI: 10.1002/chem.201701755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Xia
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Changcun Yan
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ling Li
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| | - Xiangming Liu
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
14
|
Guo SR, Kumar PS, Yang M. Recent Advances of Oxidative Radical Cross-Coupling Reactions: Direct α-C(sp3)-H Bond Functionalization of Ethers and Alcohols. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600467] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sheng-rong Guo
- Department of Chemistry; Lishui University; Lishui 323000 People's Republic of China
| | - Pailla Santhosh Kumar
- Department of Chemistry; Lishui University; Lishui 323000 People's Republic of China
| | - Minghua Yang
- Department of Chemistry; Lishui University; Lishui 323000 People's Republic of China
| |
Collapse
|
15
|
Fe-Catalyzed Cross-Dehydrogenative Coupling Reactions. Top Curr Chem (Cham) 2016; 374:38. [DOI: 10.1007/s41061-016-0038-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
|
16
|
Chen X, Li Y, Wu M, Guo H, Jiang L, Wang J, Sun S. An efficient method for the preparation of tert-butyl esters from benzyl cyanide and tert-butyl hydroperoxide under the metal free condition. RSC Adv 2016. [DOI: 10.1039/c6ra20966a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A novel protocol to synthesize tert-butyl esters from benzyl cyanides and tert-butyl hydroperoxide has been successfully achieved. Csp3–H bond oxidation, C–CN bond cleavage and C–O bond formation proceeded smoothly in one pot under the metal-free condition.
Collapse
Affiliation(s)
- Xiuling Chen
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Yan Li
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Minghu Wu
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Haibing Guo
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Longqiang Jiang
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Jian Wang
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| | - Shaofa Sun
- Non-Power Nuclear Technology Collaborative Innovation Center
- School of Nuclear Technology and Chemistry & Life Science
- Hubei University of Science and Technology
- Xianning 437100
- China
| |
Collapse
|
17
|
Chen Z, Hadjichristidis N, Feng X, Gnanou Y. Cs2CO3-promoted polycondensation of CO2 with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polym Chem 2016. [DOI: 10.1039/c6py00783j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot protocol for the direct synthesis of polycarbonates through polycondensation of diols, dihalides and CO2 in the presence of Cs2CO3 is described.
Collapse
Affiliation(s)
- Zuliang Chen
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Xie J, Zhu C. Recent Advances in Non-directed C(sp3)–H Bond Functionalization. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2016. [DOI: 10.1007/978-3-662-49496-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Serra S. MnO2/TBHP: A Versatile and User-Friendly Combination of Reagents for the Oxidation of Allylic and Benzylic Methylene Functional Groups. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Saidulu G, Kumar RA, Reddy KR. Iron-catalyzed C–N bond formation via oxidative Csp3–H bond functionalization adjacent to nitrogen in amides and anilines: Synthesis of N-alkyl and N-benzyl azoles. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
22
|
Krylov IB, Vil’ VA, Terent’ev AO. Cross-dehydrogenative coupling for the intermolecular C-O bond formation. Beilstein J Org Chem 2015; 11:92-146. [PMID: 25670997 PMCID: PMC4311763 DOI: 10.3762/bjoc.11.13] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022] Open
Abstract
The present review summarizes primary publications on the cross-dehydrogenative C-O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C-O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent. Alcohols and carboxylic acids are most commonly used as O-reagents; hydroxylamine derivatives, hydroperoxides, and sulfonic acids are employed less often. The cross-dehydrogenative C-O coupling reactions are carried out using different C-reagents, such as compounds containing directing functional groups (amide, heteroaromatic, oxime, and so on) and compounds with activated C-H bonds (aldehydes, alcohols, ketones, ethers, amines, amides, compounds containing the benzyl, allyl, or propargyl moiety). An analysis of the published data showed that the principles at the basis of a particular cross-dehydrogenative C-O coupling reaction are dictated mainly by the nature of the C-reagent. Hence, in the present review the data are classified according to the structures of C-reagents, and, in the second place, according to the type of oxidative systems. Besides the typical cross-dehydrogenative coupling reactions of CH- and OH-reagents, closely related C-H activation processes involving intermolecular C-O bond formation are discussed: acyloxylation reactions with ArI(O2CR)2 reagents and generation of O-reagents in situ from C-reagents (methylarenes, aldehydes, etc.).
Collapse
Affiliation(s)
- Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
23
|
Chen X, Chen T, Ji F, Zhou Y, Yin SF. Iron-catalyzed aerobic oxidative functionalization of sp3 C–H bonds: a versatile strategy for the construction of N-heterocycles. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01618a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron-catalyzed aerobic oxidative functionalization of sp3 C–H bonds using a biofriendly iron catalyst in combination with O2 or air as the sole oxidant has been developed for the construction of N-heterocycles from easily available carboxylic acid derivatives and o-substituted anilines.
Collapse
Affiliation(s)
- Xiuling Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- PR China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- PR China
| | - Fangyan Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- PR China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- PR China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- PR China
| |
Collapse
|
24
|
Mild propargylic oxidation using a diacetoxyiodobenzene/tert-butyl hydroperoxide protocol. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Abstract
Iron-catalyzed/mediated C–H bond oxidation has been demonstrated as one of practical and straightforward tools in synthetic chemistry.
Collapse
Affiliation(s)
- Fan Jia
- Department of Chemistry
- Renmin University of China
- Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872, China
| |
Collapse
|
26
|
Luo Y, Wen Q, Wu Z, Jin J, Lu P, Wang Y. Copper-mediated cyanation of aryl boronic acids using benzyl cyanide. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Szabó F, Pethő B, Gonda Z, Novák Z. Iron–surfactant nanocomposite-catalyzed benzylic oxidation in water. RSC Adv 2013. [DOI: 10.1039/c3ra22856h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|