1
|
Wang W, Zhao L, Zhang Y. Generation of New Synthons for Synthesis Through Activation of Nitromethane. CHEMSUSCHEM 2024; 17:e202400454. [PMID: 38702899 DOI: 10.1002/cssc.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Nitromethane is used as a common solvent, stabilizer, and fuel additive. Nitromethane has also been used as a sustainable building block and convenient reagent in chemical synthesis. In this Minireview, we summarize the recent advances in activation of nitromethane, using nitromethane as the source of cyano group, nitrogen, methylamine, formyl group, C1, nitroso, and oxime.
Collapse
Affiliation(s)
- Wenxuan Wang
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Lixing Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
2
|
Wienecke P, Arndt HD. Direct C-H Cyanation by ICN Formed In Situ: Nannozinone B. Org Lett 2023; 25:1188-1191. [PMID: 36763903 DOI: 10.1021/acs.orglett.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A novel method for C-H cyanation of different pyrans, pyrroles, indoles, and acyclic nucleophilic double bonds using TMSCN, NIS, and Zn(OTf)2 as a catalyst is described. The transformation is conducted under mild conditions tolerating a variety of functional groups. Zn(OTf)2 is likely to serve a dual catalytic role as an activator for TMSCN and for the cyanogen iodide generated in situ. Optimization, the substrate scope, and mechanistic observations are reported. Furthermore, this method is applied in the first total synthesis of the natural product nannozinone B.
Collapse
Affiliation(s)
- Paul Wienecke
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| |
Collapse
|
3
|
Recent advances in theoretical studies on transition-metal-catalyzed regioselective C-H functionalization of indoles. J Mol Model 2022; 28:267. [PMID: 35994132 DOI: 10.1007/s00894-022-05265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Indole compounds are widely found in natural products and drug candidates. The transition-metal-catalyzed regioselective C-H bond functionalization of indoles as the most efficient method for the synthesis of various functionalized indoles has been extensively studied in the past two decades due to its advantages of step economy and atom economy. In general, the catalysts included the transition-metals (Pd, Rh, Ru, Cu, Co, Fe, Zn, and Ga) and these reactions were accomplished with a remarkably wide range of coupling reagents for construction of various C-C and C-X (X = N, O, S) bonds. However, the general and important rules of the regioselectivity are not clear to date. Therefore, a comprehensive analysis through previous reported theoretical studies on transition-metal-catalyzed regioselective C-H bond functionalization of indoles was crucial and significant. In this review, we found that when the C-H bond activation process was the rate-determining step, the regioselectivity ordinarily occurred at the C7 or C4 positions (on benzene ring), and otherwise, the regioselectivity often occurred at C2 position (on pyrrole ring). For indoline substrates, the C-H bond functionalization occurred at the benzene ring. General rules of the regioselectivities for transition-metal-catalyzed C-H bond functionalization of indoles. This review collects major advances in the transition-metal-catalyzed C-H bond functionalization of indoles and indolines.
Collapse
|
4
|
Carvalho MA, Demin S, Martinez-Lamenca C, Romanov-Michailidis F, Lam K, Rombouts F, Lecomte M. Expedient Access to Cyanated N-Heterocycles by Direct Flow-Electrochemical C(sp 2 )-H Activation. Chemistry 2021; 28:e202103384. [PMID: 34658083 DOI: 10.1002/chem.202103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/30/2023]
Abstract
Nitriles are recurring motifs in bioactive molecules and versatile functional groups in synthetic chemistry. Despite recent progress, direct introduction of a nitrile moiety in heteroarenes remains challenging. Recent developments in electrochemical reactions pave the way to more practical cyanation protocols. However, currently available methods typically require hazardous cyanide sources, expensive mediators, and often suffer from narrow substrate scope and laborious reaction set-up. To address the limitations of current synthetic methods, herein, an effective, sustainable, and scalable procedure for the direct C(sp2 )-H cyanation of aromatic N-heterocycles with a user-friendly flow-electrochemical set-up is reported. Furthermore, high substrate and functional-group tolerance is demonstrated, allowing late-stage functionalization of drug-like scaffolds, such as natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Mary-Ambre Carvalho
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Samuël Demin
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | | | - Kevin Lam
- Department of Pharmaceutical, Chemical and Environmental Sciences, School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Frederik Rombouts
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Morgan Lecomte
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
5
|
Synthesis of New Highly Functionalized 1 H-Indole-2-carbonitriles via Cross-Coupling Reactions. Molecules 2021; 26:molecules26175287. [PMID: 34500719 PMCID: PMC8434198 DOI: 10.3390/molecules26175287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
An approach for the preparation of polysubstituted indole-2-carbonitriles through a cross-coupling reaction of compounds 1-(but-2-ynyl)-1H-indole-2-carbonitriles and 1-benzyl-3-iodo-1H-indole-2-carbonitriles is described. The reactivity of indole derivatives with iodine at position 3 was studied using cross-coupling reactions. The Sonogashira, Suzuki–Miyaura, Stille and Heck cross-couplings afforded a variety of di-, tri- and tetra-substituted indole-2-carbonitriles.
Collapse
|
6
|
Liu L, Li L, Wang X, Sun R, Zhou MD, Wang H. Mn(III)-Mediated Radical Cyclization of o-Alkenyl Aromatic Isocyanides with Boronic Acids: Access to N-Unprotected 2-Aryl-3-cyanoindoles. Org Lett 2021; 23:5826-5830. [PMID: 34323503 DOI: 10.1021/acs.orglett.1c01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of N-unprotected 2-aryl-3-cyanoindoles was realized via the Mn(III)-mediated radical cascade cyclization of o-alkenyl aromatic isocyanides with boronic acids. A possible mechanism involving a sequential intermolecular radical addition, intramolecular cyclization, and cleavage of the C-C bond under mild reaction conditions is proposed. Mechanism studies show that H2O or O2 might provide the oxygen source for the elimination of benzaldehyde.
Collapse
Affiliation(s)
- Lu Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
7
|
Abstract
An electrochemical approach for the site-selective C-H cyanation of indoles employing readily available TMSCN as cyano source has been developed. The electrosynthesis relies on the tris(4-bromophenyl)amine as a redox catalyst, which achieves better yield and regioselectivity. A variety of C2- and C3-cyanated indoles were obtained in satisfactory yields. The reactions are conducted in a simple undivided cell at room temperature and obviate the need for transition-metal reagent and chemical oxidant.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|
8
|
Saikia R, Park K, Masuda H, Itoh M, Yamada T, Sajiki H, Mahanta SP, Thakur AJ, Bora U. Revisiting the synthesis of aryl nitriles: a pivotal role of CAN. Org Biomol Chem 2021; 19:1344-1351. [PMID: 33471016 DOI: 10.1039/d0ob02518f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Facilitated by the dual role of Ceric Ammonium Nitrate (CAN), herein we report a cost-effective approach for the cyanation of aryl iodides/bromides with CAN-DMF as an addition to the existing pool of combined cyanation sources. In addition to being an oxidant, CAN acts as a source of nitrogen in our protocol. The reaction is catalyzed by a readily available Cu(ii) salt and the ability of CAN to generate ammonia in the reaction medium is utilized to eliminate the additional requirement of a nitrogen source, ligand, additive or toxic reagents. The mechanistic study suggests an evolution of CN- leading to the synthesis of a variety of aryl nitriles in moderate to good yields. The proposed mechanism is supported by a series of control reactions and labeling experiments.
Collapse
Affiliation(s)
- Rakhee Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam Pin-784028, India.
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hayato Masuda
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miki Itoh
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Sanjeev P Mahanta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam Pin-784028, India.
| | - Ashim J Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam Pin-784028, India.
| | | |
Collapse
|
9
|
Cui T, Zhan Y, Dai C, Lin J, Liu P, Sun P. Electrochemical Oxidative Regioselective C–H Cyanation of Imidazo[1,2-a]pyridines. J Org Chem 2021; 86:15897-15905. [DOI: 10.1021/acs.joc.0c03026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Cui
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yanling Zhan
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jun Lin
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
- Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
- Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Zhang H, Zhang R, Wang L, Li Y, Liao S, Zhou M. Synthesis Strategies for α‐, β‐, γ‐ and δ‐Carbolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Rong‐Hong Zhang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique Guizhou Province Key Laboratory of Regenerative Medicine Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences) Center for Tissue Engineering and Stem Cell Research Guizhou Medical University Guiyang 550004 PR China
| | - Li‐Xia Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Yong‐Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| |
Collapse
|
11
|
Xiang S, Li Y, Fan W, Jin J, Zhang W, Huang D. Copper(II)-Dioxygen Facilitated Activation of Nitromethane: Nitrogen Donors for the Synthesis of Substituted 2-Hydroxyimino-2-phenylacetonitriles and Phthalimides. Front Chem 2021; 8:622867. [PMID: 33585402 PMCID: PMC7878530 DOI: 10.3389/fchem.2020.622867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
A simple and efficient method is explored for the synthesis of 2-hydroxyimino-2-phenylacetonitriles (2) and phthalimides (4), by using nitromethane as nitrogen donors. Both reactions are promoted by Cu(II) system with the participation of dioxygen as an oxidant. The scope of the method has been successfully demonstrated with a total of 51 examples. The flexible and diversified characteristics of reactions are introduced in terms of electronic effect, steric effect, position of substituted groups, and intramolecular charge transfer. Experimental studies suggest that the methyl nitrite could be a precursor in the path to the final products. A possible reaction mechanism is proposed, including the Cu(II)/O2-facilitated transformation of nitromethane to methyl nitrite, the base-induced formation of 2-hydroxyimino-2-phenylacetonitriles, and the base-dioxygen-promoted formation of phthalimides.
Collapse
Affiliation(s)
- Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
12
|
Rh(III)-catalyzed direct cross-dehydrogenative coupling of aromatic nitriles with heteroarenes: Rapid access to biheteroaryl-2-carbonitriles. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Wu J, Liu J, Zhou K, He Z, Wang Q, Wu F, Miao T, Qian J, Shi Q. Efficient construction of diverse 3-cyanoindoles under novel tandem catalysis. Chem Commun (Camb) 2020; 56:12660-12663. [PMID: 32966377 DOI: 10.1039/d0cc05439a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel and rapid construction of 3-cyanoindoles by palladium-catalyzed tandem reactions has been developed. "N-H" free unprotected, N-alkyl and N-aryl 3-cyanoindoles are obtained with good to excellent yields. The usefulness of this synthetic approach is further demonstrated by the successful synthesis of practical compounds such as the therapeutic estrogen receptor ligand A precursor. Mechanism study shows that the tandem catalysis exploits a Suzuki cross-coupling with subsequent base-induced isoxazole fragmentation, followed by the aldimine condensation.
Collapse
Affiliation(s)
- Jun Wu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiabin Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Kerui Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenni He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Qian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Fen Wu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jinjie Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Qian Shi
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
14
|
Li J, Shi L, Zhang SP, Wang XY, Zhu X, Hao XQ, Song MP. Rh(III)-Catalyzed C-H Cyanation of 2 H-Indazole with N-Cyano- N-phenyl- p-toluenesulfonamide. J Org Chem 2020; 85:10835-10845. [PMID: 32692175 DOI: 10.1021/acs.joc.0c01386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A Rh(III)-catalyzed direct cyanation of 2H-indazoles with N-cyano-N-phenyl-p-toluenesulfonamide has been realized via a chelation-assisted strategy. The methodology enables regioselective access to various ortho-cyanated phenylindazoles in good yields with a broad substrate scope and good functional group compatibility. The obtained cyanated indazoles could further be converted into other value-added chemicals. Importantly, the current protocol is featured with several characteristics, including a novel cyanating agent, good regioselectivity, and operational convenience.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Shu-Ping Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
15
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
16
|
Liu B, Liu M, Li Q, Li Y, Feng K, Zhou Y. The palladium-catalyzed direct C3-cyanation of indoles using acetonitrile as the cyanide source. Org Biomol Chem 2020; 18:6108-6114. [DOI: 10.1039/d0ob00485e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The palladium-catalyzed C3-cyanation of indoles via direct C–H functionalization was achieved utilizing CH3CN as the cyanide source through transition-metal-catalyzed C–CN bond cleavage.
Collapse
Affiliation(s)
- Bifu Liu
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou
- China
| | - Min Liu
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Qiang Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
- College of Chemistry and Chemical Engineering
| | - Yuanhua Li
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou
- China
| | - Kejun Feng
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou
- China
| | - Yongbo Zhou
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
17
|
An Insight into Nitromethane as an Organic Nitrile Alternative Source towards the Synthesis of Aryl Nitriles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Wang X, Makha M, Chen SW, Zheng H, Li Y. GaCl3-Catalyzed C–H Cyanation of Indoles with N-Cyanosuccinimide. J Org Chem 2019; 84:6199-6206. [DOI: 10.1021/acs.joc.9b00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xue Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Mohamed Makha
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 P. R. China
| | - Huaiji Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
19
|
Modern methods for the synthesis of δ-carbolines. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Deng C, Sun Y, Ren Y, Zhang W. Theoretical studies on Rh(iii)-catalyzed regioselective C-H bond cyanation of indole and indoline. Dalton Trans 2018; 48:168-175. [PMID: 30516212 DOI: 10.1039/c8dt04079f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Density functional theory calculations were carried out to study the reaction mechanism of the Rh(iii)-catalyzed regioselective C-H cyanation of indole and indoline with N-cyano-N-phenyl-para-methylbenzenesulfonamide (NCTS). This mechanism involves four major steps: C-H activation, cyano group insertion, β-N elimination, and regeneration of active species. How different indole and indoline substrates affect the regioselectivity of C-H bond cyanation has been examined and analyzed in detail. Our calculation results indicate that the regioselectivity of C-H bond cyanation of indole depends on the nucleophilicity of carbon atoms in C-Rh(iii) bonds to the cyano group. For indoline, it can be attributed to the different hybridization platforms of the C-H bond activation.
Collapse
Affiliation(s)
- Chao Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | | | | | | |
Collapse
|
21
|
Xu F, Li Y, Huang X, Fang X, Li Z, Jiang H, Qiao J, Chu W, Sun Z. Hypervalent Iodine(III)‐Mediated Regioselective Cyanation of Quinoline
N
‐Oxides with Trimethylsilyl Cyanide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Xu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Yuqin Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xin Huang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xinjie Fang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhuofei Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Hongshuo Jiang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Jingyi Qiao
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| |
Collapse
|
22
|
Li ZL, Sun KK, Cai C. Copper-catalyzed cyanation of heterocycle C–H bonds with ethyl(ethoxymethylene)cyanoacetate as a cyanating agent and its mechanism. Org Chem Front 2018. [DOI: 10.1039/c8qo00322j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A method for copper-catalyzed cyanation of heterocycles with ethyl(ethoxymethylene)cyanoacetate as a nontoxic and easily available cyanating agent via C–H bond activation has been developed.
Collapse
Affiliation(s)
- Ze-lin Li
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Kang-kang Sun
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Chun Cai
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|
23
|
Ogiwara Y, Morishita H, Sasaki M, Imai H, Sakai N. Copper-catalyzed Cyanation of Aryl Iodides Using Nitromethane. CHEM LETT 2017. [DOI: 10.1246/cl.170798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| | - Hiromitsu Morishita
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| | - Minoru Sasaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| | - Hiroki Imai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| |
Collapse
|
24
|
Affiliation(s)
- Guobing Yan
- Department of Chemistry; Lishui University; Lishui Zhejiang 323000 People's Republic of China
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 People's Republic of China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 People's Republic of China
| |
Collapse
|
25
|
Yonekura K, Iketani Y, Sekine M, Tani T, Matsui F, Kamakura D, Tsuchimoto T. Zinc-Catalyzed Dehydrogenative Silylation of Indoles. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyohei Yonekura
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Yoshihiko Iketani
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Masaru Sekine
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Tomohiro Tani
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Fumiya Matsui
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Daiki Kamakura
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
26
|
Lu S, Xu R, Li Z. Benzannulation of Pyrroles to 4,5-Disubstituted Indoles through Brønsted-Acid-Promoted Rearrangement of tert
-Butyl Peroxides. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenglin Lu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ran Xu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Zhiping Li
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
27
|
Chu H, Guo M, Yi Y, Wen Y, Zhou L, Huang H. A facile and efficient synthesis of 3-cyanoindoles by a simple palladium(II)-catalyzed C─H activation of indoles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hailiang Chu
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| | - Mengping Guo
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| | - Yanping Yi
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| | - Yongju Wen
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| | - Lanjiang Zhou
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| | - Hongwei Huang
- Institute of Coordination Catalysis, College of Chemistry and Bio-engineering; Yichun University; Yichun 336000 People's Republic of China
| |
Collapse
|
28
|
Qi C, Hu X, Jiang H. Copper-mediated C–H cyanation of (hetero)arenes with ethyl (ethoxymethylene)cyanoacetate as a cyanating agent. Chem Commun (Camb) 2017; 53:7994-7997. [DOI: 10.1039/c7cc03384b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-mediated direct C–H cyanation reaction of (hetero)arenes with ethyl (ethoxymethylene)cyanoacetate as a safe cyanating agent has been developed.
Collapse
Affiliation(s)
- Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Xiaohan Hu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
29
|
Shi H, Liu R, Zhu S, Gong Q, Shi H, Zhu X, Zhu H. Synthesis, Aggregation Induced Emission and Mechanochromic Luminescence of New β-Diketone Derivatives Bearing Tetraphenylene Moieties. J Fluoresc 2016; 26:2005-2013. [DOI: 10.1007/s10895-016-1894-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
|
30
|
Nomiyama S, Hondo T, Tsuchimoto T. Easy Access to a Library of Alkylindoles: Reductive Alkylation of Indoles with Carbonyl Compounds and Hydrosilanes under Indium Catalysis. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Wang ZH, Ji XM, Hu ML, Tang RY. Nitromethane as a cyanating reagent for the synthesis of thiocyanates. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ballini R, Petrini M. The Nitro to Carbonyl Conversion (Nef Reaction): New Perspectives for a Classical Transformation. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Zhang L, Lu P, Wang Y. Copper-mediated cyanation of indoles and electron-rich arenes using DMF as a single surrogate. Org Biomol Chem 2015; 13:8322-9. [DOI: 10.1039/c5ob01244a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-mediated cyanation of indoles with DMF as a single surrogate of “CN” has been realized.
Collapse
Affiliation(s)
- Lianpeng Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Ping Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yanguang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
34
|
Yu DG, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. Co(III)-catalyzed C-H activation/formal SN-type reactions: selective and efficient cyanation, halogenation, and allylation. J Am Chem Soc 2014; 136:17722-5. [PMID: 25472496 DOI: 10.1021/ja511011m] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first cobalt-catalyzed cyanation, halogenation, and allylation via C-H activation have been realized. These formal SN-type reactions generate valuable (hetero)aryl/alkenyl nitriles, iodides, and bromides as well as allylated indoles using a bench-stable Co(III) catalyst. High regio- and mono-selectivity were achieved for these reactions. Additionally, allylation proceeded efficiently with a turnover number of 2200 at room temperature, which is unprecedented for this Co(III) catalyst. Alkenyl substrates and amides have been successfully utilized in Cp*Co(III)-catalyzed C-H activation for the first time.
Collapse
Affiliation(s)
- Da-Gang Yu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
35
|
Motokura K, Matsunaga K, Miyaji A, Yamaguchi S, Baba T. A method for the cyanation of alkenes using nitromethane as a source of cyano group mediated by proton-exchanged montmorillonite. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Tsuchimoto T, Utsugi H, Sugiura T, Horio S. Alkynylboranes: A Practical Approach by Zinc-Catalyzed Dehydrogenative Coupling of Terminal Alkynes with 1,8-Naphthalenediaminatoborane. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400767] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|