1
|
Liu H, Wang S, Xu M, Zhang K, Gao Q, Wang H, Wei D. Engineering an (R)-selective transaminase for asymmetric synthesis of (R)-3-aminobutanol. Bioorg Chem 2024; 146:107264. [PMID: 38492494 DOI: 10.1016/j.bioorg.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
(R)-selective transaminases show promise as catalysts for the asymmetric synthesis of chiral amines, which are building blocks of various small molecule drugs. However, their application is limited by poor substrate acceptance and low catalytic efficiency. Here, a potential (R)-selective transaminase from Fodinicurvata sediminis (FsTA) was identified through a substrate truncating strategy, and used as starting point for enzyme engineering toward catalysis of 4-hydroxy-2-butanone, a substrate that poses challenges in catalysis. Molecular docking and dynamics simulations revealed Y90 as the key residue responsible for poor substrate binding. Starting from the variant (Y90F, mut1) with initial activity, FsTA was systematically modified to improve substrate-binding through active site reshaping and consensus sequence strategy, yielding three variants (H30R, V152K, and Y156F) with improved activity. A quadruple mutation variant H30R/Y90F/V152K/Y156F (mut4) was also found to show a 7.95-fold greater catalytic efficiency (kcat/KM) than the initial variant mut1. Furthermore, mut4 also enhanced the thermostability of enzyme significantly, with the Tm value increasing by 10 °C. This variant also exhibited significantly improved activity toward a series of ketones that are either not accepted or poorly accepted by the wild-type. This study provides a basis for the rational design of an active to creating variants that can accommodate novel substrates.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shixi Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhou W, Wang C, Hao X, Chen F, Huang Q, Liu T, Xu J, Guo S, Liao B, Liu Z, Feng Y, Wang Y, Liao P, Xue J, Shi M, Maoz I, Kai G. A chromosome-level genome assembly of anesthetic drug-producing Anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids. PLANT COMMUNICATIONS 2024; 5:100680. [PMID: 37660252 PMCID: PMC10811374 DOI: 10.1016/j.xplc.2023.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Can Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaolong Hao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qikai Huang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Tingyao Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhixiang Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue Feng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yao Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiayu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, HaMaccabim Road 68, Rishon LeZion 7505101, Israel
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
3
|
Yang L, Zhang K, Xu M, Xie Y, Meng X, Wang H, Wei D. Mechanism-Guided Computational Design of ω-Transaminase by Reprograming of High-Energy-Barrier Steps. Angew Chem Int Ed Engl 2022; 61:e202212555. [PMID: 36300723 DOI: 10.1002/anie.202212555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
ω-Transaminases (ω-TAs) show considerable potential for the synthesis of chiral amines. However, their low catalytic efficiency towards bulky substrates limits their application, and complicated catalytic mechanisms prevent precise enzyme design. Herein, we address this challenge using a mechanism-guided computational enzyme design strategy by reprograming the transition and ground states in key reaction steps. The common features among the three high-energy-barrier steps responsible for the low catalytic efficiency were revealed using quantum mechanics (QM). Five key residues were simultaneously tailored to stabilize the rate-limiting transition state with the aid of the Rosetta design. The 14 top-ranked variants showed 16.9-143-fold improved catalytic activity. The catalytic efficiency of the best variant, M9 (Q25F/M60W/W64F/I266A), was significantly increased, with a 1660-fold increase in kcat /Km and a 1.5-26.8-fold increase in turnover number (TON) towards various indanone derivatives.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
4
|
Sheludko YV, Slagman S, Gittings S, Charnock SJ, Land H, Berglund P, Fessner WD. Enantioselective Synthesis of Pharmaceutically Relevant Bulky Arylbutylamines Using Engineered Transaminases. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Samantha Gittings
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Simon J. Charnock
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | | | | | | |
Collapse
|
5
|
Han SW, Choi Y, Jang Y, Kim JS, Shin JS. One-pot biosynthesis of aromatic D-amino acids and neuroactive monoamines via enantioselective decarboxylation under in situ product removal using ion exchange resin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Xie YY, Wang J, Yang L, Wang W, Liu QH, Wang H, Wei D. The identification and application of a robust ω-transaminase with high tolerance of substrate and isopropylamine from a directed soil metagenome. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ω-transaminase-mediated asymmetric amination of a ketone substrate has gained significant attention for its immense potential to synthesize chiral amine pharmaceuticals and precursors. However, few of these have been authentically...
Collapse
|
7
|
Yu J, Zong W, Ding Y, Liu J, Chen L, Zhang H, Jiao Q. Fabrication of ω‐Transaminase@Metal‐Organic Framework Biocomposites for Efficiently Synthesizing Benzylamines and Pyridylmethylamines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Weilu Zong
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Yingying Ding
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Lina Chen
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Hongjuan Zhang
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| |
Collapse
|
8
|
Zhang Z, Liu Y, Zhao J, Li W, Hu R, Li X, Li A, Wang Y, Ma L. Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of L-2-aminobutyric acid. BMC Biotechnol 2021; 21:55. [PMID: 34563172 PMCID: PMC8466713 DOI: 10.1186/s12896-021-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The unnatural amino acid, L-2-aminobutyric acid (L-ABA) is an essential chiral building block for various pharmaceutical drugs, such as the antiepileptic drug levetiracetam and the antituberculosis drug ethambutol. The present study aims at obtaining variants of ω-transaminase from Ochrobactrum anthropi (OATA) with high catalytic activity to α-ketobutyric acid through protein engineering. RESULTS Based on the docking model using α-ketobutyric acid as the ligand, 6 amino acid residues, consisting of Y20, L57, W58, G229, A230 and M419, were chosen for saturation mutagenesis. The results indicated that L57C, M419I, and A230S substitutions demonstrated the highest elevation of enzymatic activity among 114 variants. Subsequently, double substitutions combining L57C and M419I caused a further increase of the catalytic efficiency to 3.2-fold. This variant was applied for threonine deaminase/OATA coupled reaction in a 50-mL reaction system with 300 mM L-threonine as the substrate. The reaction was finished in 12 h and the conversion efficiency of L-threonine into L-ABA was 94%. The purity of L-ABA is 75%, > 99% ee. The yield of L-ABA was 1.15 g. CONCLUSION This study provides a basis for further engineering of ω-transaminase for producing chiral amines from keto acids substrates.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Ruiwen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Xia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| |
Collapse
|
9
|
Meng Q, Ramírez-Palacios C, Capra N, Hooghwinkel ME, Thallmair S, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Marrink SJ, Janssen DB. Computational Redesign of an ω-Transaminase from Pseudomonas jessenii for Asymmetric Synthesis of Enantiopure Bulky Amines. ACS Catal 2021; 11:10733-10747. [PMID: 34504735 PMCID: PMC8419838 DOI: 10.1021/acscatal.1c02053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Indexed: 01/19/2023]
Abstract
![]()
ω-Transaminases
(ω-TA) are attractive biocatalysts
for the production of chiral amines from prochiral ketones via asymmetric synthesis. However, the substrate scope of
ω-TAs is usually limited due to steric hindrance at the active
site pockets. We explored a protein engineering strategy using computational
design to expand the substrate scope of an (S)-selective
ω-TA from Pseudomonas jessenii (PjTA-R6) toward the production of bulky amines. PjTA-R6 is attractive for use in applied biocatalysis due
to its thermostability, tolerance to organic solvents, and acceptance
of high concentrations of isopropylamine as amino donor. PjTA-R6 showed no detectable activity for the synthesis of six bicyclic
or bulky amines targeted in this study. Six small libraries composed
of 7–18 variants each were separately designed via computational methods and tested in the laboratory for ketone to
amine conversion. In each library, the vast majority of the variants
displayed the desired activity, and of the 40 different designs, 38
produced the target amine in good yield with >99% enantiomeric
excess.
This shows that the substrate scope and enantioselectivity of PjTA mutants could be predicted in silico with high accuracy. The single mutant W58G showed the best performance
in the synthesis of five structurally similar bulky amines containing
the indan and tetralin moieties. The best variant for the other bulky
amine, 1-phenylbutylamine, was the triple mutant W58M + F86L + R417L,
indicating that Trp58 is a key residue in the large binding pocket
for PjTA-R6 redesign. Crystal structures of the two
best variants confirmed the computationally predicted structures.
The results show that computational design can be an efficient approach
to rapidly expand the substrate scope of ω-TAs to produce enantiopure
bulky amines.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Mattijs E. Hooghwinkel
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, Frankfurt am Main 60438, Germany
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| |
Collapse
|
10
|
Xie Y, Xu F, Yang L, Liu H, Xu X, Wang H, Wei D. Engineering the large pocket of an ( S)-selective transaminase for asymmetric synthesis of ( S)-1-amino-1-phenylpropane. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02426k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amine transaminases offer an environmentally benign chiral amine asymmetric synthesis route.
Collapse
Affiliation(s)
- Youyu Xie
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - He Liu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | | | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
11
|
Creation of a robust and R-selective ω-amine transaminase for the asymmetric synthesis of sitagliptin intermediate on a kilogram scale. Enzyme Microb Technol 2020; 141:109655. [PMID: 33051014 DOI: 10.1016/j.enzmictec.2020.109655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
The creation of an R-selective ω-amine transaminase (ω-ATA) as biocatalyst is crucial for the asymmetric amination of prochiral ketones to produce sitagliptin intermediates because rare ω-ATAs are R-selective in nature and most of them suffer from poor stability and low activity toward bulky prochiral ketones. Here, the gene of an R-selective ω-ATA was cloned from Arthrobacter cumminsii ZJUT212 (AcATA) and expressed in Escherichia coli. The best variants (M1 + M122H and M1+T134 G) were obtained using a semi-rational protein design after screening. These variants not only exhibited improved activity and substrate affinity but also enhanced stability in aqueous phase containing 20 % dimethyl sulfoxide. The conversion of asymmetric amination on 50 g/L pro-sitagliptin ketone PTfpB (1-[1-piperidinyl]-4-[2,4,5-trifluorophenyl]-1,3-butanedione) achieved 92 %, with an extremely high e.e. of >99 %, using 2 gDCW/L E. coli cells harboring M1 + M122H as biocatalyst. In the kilogram-scale experiment, approximately 40 kg of (R)-APTfpB (e.e. >99 %) was produced within 30 h when 50 kg PTfpB was used as the substrate. Furthermore, the space-time yield reached ≈32 g/(L·d).
Collapse
|
12
|
Soluble expression and biomimetic immobilization of a ω-transaminase from Bacillus subtilis: Development of an efficient and recyclable biocatalyst. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Han S, Shin J. Rapid and Quantitative Profiling of Substrate Specificity of ω‐Transaminases for Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sang‐Woo Han
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Jong‐Shik Shin
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| |
Collapse
|
14
|
Kim H, Han S, Shin J. Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hong‐Gon Kim
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Sang‐Woo Han
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Jong‐Shik Shin
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| |
Collapse
|
15
|
Activity Improvements of an Engineered ω-transaminase for Ketones Are Positively Correlated with Those for Cognate Amines. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Strategic single point mutation yields a solvent- and salt-stable transaminase from Virgibacillus sp. in soluble form. Sci Rep 2018; 8:16441. [PMID: 30401905 PMCID: PMC6219536 DOI: 10.1038/s41598-018-34434-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/05/2018] [Indexed: 11/08/2022] Open
Abstract
A new transaminase (VbTA) was identified from the genome of the halotolerant marine bacterium Virgibacillus 21D. Following heterologous expression in Escherichia coli, it was located entirely in the insoluble fraction. After a single mutation, identified via sequence homology analyses, the VbTA T16F mutant was successfully expressed in soluble form and characterised. VbTA T16F showed high stability towards polar organic solvents and salt exposure, accepting mainly hydrophobic aromatic amine and carbonyl substrates. The 2.0 Å resolution crystal structure of VbTA T16F is here reported, and together with computational calculations, revealed that this mutation is crucial for correct dimerisation and thus correct folding, leading to soluble protein expression.
Collapse
|
17
|
Dawood AWH, Bassut J, de Souza ROMA, Bornscheuer UT. Combination of the Suzuki-Miyaura Cross-Coupling Reaction with Engineered Transaminases. Chemistry 2018; 24:16009-16013. [DOI: 10.1002/chem.201804366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry, Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Jonathan Bassut
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of; Rio de Janeiro Brazil
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of; Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry, Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
18
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
19
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 67=89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
20
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
21
|
Dawood AWH, de Souza ROMA, Bornscheuer UT. Asymmetric Synthesis of Chiral Halogenated Amines using Amine Transaminases. ChemCatChem 2018. [DOI: 10.1002/cctc.201701962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
22
|
Gomm A, O'Reilly E. Transaminases for chiral amine synthesis. Curr Opin Chem Biol 2018; 43:106-112. [PMID: 29278779 DOI: 10.1016/j.cbpa.2017.12.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
Amine transaminases are important biocatalysts for the synthesis of chiral primary amines. Unlike many enzymes that have been employed for the synthesis of optically active amines, amine transaminases are capable of asymmetric synthesis and do not rely on costly cofactors that must be regenerated in situ. However, their application as general catalysts for the preparation of amines is hampered by a limited substrate scope, substrate and (co)product inhibition and difficulties associated with displacing challenging reaction equilibrium. There has been important progress made to overcome these challenges, including the development of enzymes with broader substrate scope and the design of methodology to effectively displace the reaction equilibrium. Amine transaminases are also being applied in an increasing range of (chemo)enzymatic cascades and immobilized for applications in flow.
Collapse
Affiliation(s)
- Andrew Gomm
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Elaine O'Reilly
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
23
|
Ferrandi EE, Monti D. Amine transaminases in chiral amines synthesis: recent advances and challenges. World J Microbiol Biotechnol 2017; 34:13. [PMID: 29255954 DOI: 10.1007/s11274-017-2395-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Transaminases, which catalyze the stereoselective transfer of an amino group between an amino donor and a prochiral ketone substrate, are interesting biocatalytic tools for the generation of optically pure chiral amines. In particular, amine transaminases (ATAs) are of industrial interest because they are capable of performing reductive amination reactions using a broad range of amine donors and acceptors. The most remarkable example of ATAs industrial application is in the production process of the anti-hyperglycaemic drug sitagliptin (Januvia®/Janumet®), which generated around 6 billion U.S. dollars of revenue to Merck in 2016. In this review, an update about the availability of microbial ATAs, discovered by both screening and database-mining approaches, or obtained by protein engineering of wild-type enzymes, will be provided. Current challenges in ATAs application and possible solutions will be also discussed. In particular, innovative biocatalytic process strategies aimed at the improvement of ATAs performances in chiral amines synthesis, e.g., using in situ product removal process strategies or flow reactors, will be presented. The progress in the industrial exploitation of these enzymes will be highlighted by selected examples of large-scale ATA-catalyzed processes.
Collapse
Affiliation(s)
- Erica E Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
24
|
Calvelage S, Dörr M, Höhne M, Bornscheuer UT. A Systematic Analysis of the Substrate Scope of (S
)- and (R
)-Selective Amine Transaminases. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sten Calvelage
- University of Greifswald; Institute of Biochemistry; Department of Biotechnology & Enzyme Catalysis; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Mark Dörr
- University of Greifswald; Institute of Biochemistry; Department of Biotechnology & Enzyme Catalysis; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Matthias Höhne
- University of Greifswald; Institute of Biochemistry; Department of Protein Biochemistry; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- University of Greifswald; Institute of Biochemistry; Department of Biotechnology & Enzyme Catalysis; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
25
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
26
|
Zheng GW, Liu YY, Chen Q, Huang L, Yu HL, Lou WY, Li CX, Bai YP, Li AT, Xu JH. Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase CgKR1. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan-Yang Liu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Huang
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui-Lei Yu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wen-Yong Lou
- Lab
of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun-Xiu Li
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Peng Bai
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ai-Tao Li
- Department
of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
27
|
Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D. Novel thermostable amine transferases from hot spring metagenomes. Appl Microbiol Biotechnol 2017; 101:4963-4979. [PMID: 28357542 DOI: 10.1007/s00253-017-8228-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023]
Abstract
Hot spring metagenomes, prepared from samples collected at temperatures ranging from 55 to 95 °C, were submitted to an in silico screening aimed at the identification of novel amine transaminases (ATAs), valuable biocatalysts for the preparation of optically pure amines. Three novel (S)-selective ATAs, namely Is3-TA, It6-TA, and B3-TA, were discovered in the metagenome of samples collected from hot springs in Iceland and in Italy, cloned from the corresponding metagenomic DNAs and overexpressed in recombinant form in E. coli. Functional characterization of the novel ATAs demonstrated that they all possess a thermophilic character and are capable of performing amine transfer reactions using a broad range of donor and acceptor substrates, thus suggesting a good potential for practical synthetic applications. In particular, the enzyme B3-TA revealed to be exceptionally thermostable, retaining 85% of activity after 5 days of incubation at 80 °C and more than 40% after 2 weeks under the same condition. These results, which were in agreement with the estimation of an apparent melting temperature around 88 °C, make B3-TA, to the best of our knowledge, the most thermostable natural ATA described to date. This biocatalyst showed also a good tolerance toward different water-miscible and water-immiscible organic solvents. A detailed inspection of the homology-based structural model of B3-TA showed that the overall active site architecture of mesophilic (S)-selective ATAs was mainly conserved in this hyperthermophilic homolog. Additionally, a subfamily of B3-TA-like transaminases, mostly uncharacterized and all from thermophilic microorganisms, was identified and analyzed in terms of phylogenetic relationships and sequence conservation.
Collapse
Affiliation(s)
- Erica Elisa Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy. .,University of Copenhagen, Ole Maaløesvej 5, 2200, Copenhagen N, Denmark.
| | - Alessandra Previdi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy
| | - Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy.,Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy
| | - Xu Peng
- University of Copenhagen, Ole Maaløesvej 5, 2200, Copenhagen N, Denmark
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
28
|
A facile method to determine intrinsic kinetic parameters of ω-transaminase displaying substrate inhibition. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Dourado DFAR, Pohle S, Carvalho ATP, Dheeman DS, Caswell JM, Skvortsov T, Miskelly I, Brown RT, Quinn DJ, Allen CCR, Kulakov L, Huang M, Moody TS. Rational Design of a (S)-Selective-Transaminase for Asymmetric Synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel F. A. R. Dourado
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Stefan Pohle
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Alexandra T. P. Carvalho
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Dharmendra S. Dheeman
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Jill M. Caswell
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Timofey Skvortsov
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Iain Miskelly
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Rodney T. Brown
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Derek J. Quinn
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Christopher C. R. Allen
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Leonid Kulakov
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Meilan Huang
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Thomas S. Moody
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| |
Collapse
|
30
|
Genz M, Melse O, Schmidt S, Vickers C, Dörr M, van den Bergh T, Joosten HJ, Bornscheuer UT. Engineering the Amine Transaminase fromVibrio fluvialistowards Branched-Chain Substrates. ChemCatChem 2016. [DOI: 10.1002/cctc.201601007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maika Genz
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Okke Melse
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Sandy Schmidt
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Clare Vickers
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Mark Dörr
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Tom van den Bergh
- Bio-Prodict; Nieuwe Marktstraat 54E 6511 AA Nijmegen The Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict; Nieuwe Marktstraat 54E 6511 AA Nijmegen The Netherlands
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|