1
|
Sun X, Gao PC, Sun YW, Li BJ. Amide-Directed, Rhodium-Catalyzed Regio- and Enantioselective Hydroacylation of Internal Alkenes with Unfunctionalized Aldehydes. J Am Chem Soc 2024; 146:723-732. [PMID: 38116993 DOI: 10.1021/jacs.3c10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Despite the current progress achieved in asymmetric hydroacylations, highly enantioselective catalytic addition of unfunctionalized aldehydes to internal alkenes remains an unsolved challenge. Here, using a coordination-assisted strategy, we developed a rhodium-catalyzed regio- and enantioselective addition of unfunctionalized aldehydes to internal alkenes such as enamides and β,γ-unsaturated amides. Valuable α-amino ketones and 1,4-dicarbonyl compounds were directly obtained with high enantioselectivity from readily available materials.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng-Chao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Wang H, Ye M. Research Advance on Enantioselective Transition Metal-Catalyzed Hydroacylation Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Chang ZX, Gong FY, Wang X, Zhang T, Han J, Li HS. Rhodium-Catalyzed Regioselective Formal Hydroacylation of Vinyl Epoxides toward Esters Involving β-Carbon Cleavage. Org Lett 2021; 23:6084-6089. [PMID: 34286983 DOI: 10.1021/acs.orglett.1c02153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we disclose the first example of the formal hydroacylation reactions of vinyl epoxides with chelating aldehydes enabled by rhodium catalysis for the efficient construction of functionalized esters. Detailed investigations of the mechanistic pathway reveal that the presence of a 2-vinyl group is essential in contributing to the success of this regioselective reaction, which might proceed through β-carbon cleavage as the key procedure.
Collapse
Affiliation(s)
- Zhi-Xin Chang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Fei-Yuan Gong
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Xiaodan Wang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Tongbo Zhang
- Beijing Pharmaceutical Research Institute, Heilongjiang ZBD Pharmaceutical Co., Ltd., Beijing 101102, P. R. China
| | - Junfen Han
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Hong-Shuang Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| |
Collapse
|
5
|
Davison RT, Kuker EL, Dong VM. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis. Acc Chem Res 2021; 54:1236-1250. [PMID: 33533586 DOI: 10.1021/acs.accounts.0c00771] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By using transition metal catalysts, chemists have altered the "logic of chemical synthesis" by enabling the functionalization of carbon-hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C-H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C-H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation).Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson's catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage.Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C-C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H2. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C-C and C-O bond-forming reactions, as well as C-C bond-cleaving processes.
Collapse
Affiliation(s)
- Ryan T. Davison
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erin L. Kuker
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Du P, Lu XB. A Simple Strategy for the Preparation of P
-Chirogenic Trost Ligands with Different Absolute Configurations. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Du
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road 116024 Dalian China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road 116024 Dalian China
| |
Collapse
|
7
|
Shirai T, Iwasaki T, Kanemoto K, Yamamoto Y. Cationic Iridium/Chiral Bisphosphine‐Catalyzed Enantioselective Hydroacylation of Ketones. Chem Asian J 2020; 15:1858-1862. [DOI: 10.1002/asia.202000386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Tomoya Iwasaki
- Department of Materials Science and Engineering National Institute of Technology Kochi College 200-1 Monobe otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1–3-27 Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center (FCC) Faculty of Engineering Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
8
|
Muthukumar A, Sangeetha S, Sekar G. Recent developments in functionalization of acyclic α-keto amides. Org Biomol Chem 2018; 16:7068-7083. [DOI: 10.1039/c8ob01423j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the synthetic utility of α-keto amides to synthesize various important molecules via mono, dual and triple functionalization reactions.
Collapse
Affiliation(s)
- Alagesan Muthukumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Subramani Sangeetha
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| |
Collapse
|
9
|
Newton CG, Wang SG, Oliveira CC, Cramer N. Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes. Chem Rev 2017; 117:8908-8976. [DOI: 10.1021/acs.chemrev.6b00692] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher G. Newton
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shou-Guo Wang
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Caio C. Oliveira
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Zhou ZW, Jia FC, Xu C, Jiang SF, Wu YD, Wu AX. A concise construction of 12H-benzo[4,5]thiazolo[2,3-b]quinazolin-12-ones via an unusual TBHP/Na2CO3 promoted cascade oxidative cyclization and interrupted Dimroth rearrangement. Chem Commun (Camb) 2017; 53:1056-1059. [DOI: 10.1039/c6cc09376k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An interrupted Dimroth rearrangement was merged into the oxidative cyclization between isatins and 2-haloaryl isothiocyanates, giving 12H-benzo[4,5]thiazolo[2,3-b]quinazolin-12-one derivatives.
Collapse
Affiliation(s)
- Zhi-Wen Zhou
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| | - Feng-Cheng Jia
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| | - Cheng Xu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| | - Shi-Fen Jiang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Hubei
| |
Collapse
|
11
|
Hummel JR, Boerth JA, Ellman JA. Transition-Metal-Catalyzed C-H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds. Chem Rev 2016; 117:9163-9227. [PMID: 27936637 DOI: 10.1021/acs.chemrev.6b00661] [Citation(s) in RCA: 569] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds has emerged as a particularly efficient and powerful approach for the construction of an incredibly diverse array of heteroatom-substituted products. Readily available and stable inputs are typically employed, and reactions often proceed with very high functional group compatibility and without the production of waste byproducts. Additionally, many transition-metal-catalyzed C-H bond additions to polarized π bonds occur within cascade reaction sequences to provide rapid access to a diverse array of different heterocyclic as well as carbocyclic products. This review highlights the diversity of transformations that have been achieved, catalysts that have been used, and types of products that have been prepared through the transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds.
Collapse
Affiliation(s)
- Joshua R Hummel
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jeffrey A Boerth
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|