1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Rivollier P, Samain E, Armand S, Jeacomine I, Richard E, Fort S. Synthesis of Neuraminidase-Resistant Sialyllactose Mimetics from N-Acyl Mannosamines using Metabolically Engineered Escherichia coli. Chemistry 2023; 29:e202301555. [PMID: 37294058 DOI: 10.1002/chem.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.
Collapse
Affiliation(s)
- Paul Rivollier
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Eric Samain
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
3
|
de Lederkremer RM, Giorgi ME, Agusti R. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. RSC Chem Biol 2022; 3:121-139. [PMID: 35360885 PMCID: PMC8827155 DOI: 10.1039/d1cb00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - María Eugenia Giorgi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - Rosalía Agusti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| |
Collapse
|
4
|
Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs. Eur J Med Chem 2022; 232:114146. [DOI: 10.1016/j.ejmech.2022.114146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
5
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
6
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Huang YT, Su YC, Wu HR, Huang HH, Lin EC, Tsai TW, Tseng HW, Fang JL, Yu CC. Sulfo-Fluorous Tagging Strategy for Site-Selective Enzymatic Glycosylation of para-Human Milk Oligosaccharides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Chia Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center at National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
8
|
Wu DY, Adak AK, Kuo YT, Shen YJ, Li PJ, Hwu JR, Lin CC. A Modular Chemoenzymatic Synthesis of Disialosyl Globopentaosylceramide (DSGb5Cer) Glycan. J Org Chem 2020; 85:15920-15935. [PMID: 32567311 DOI: 10.1021/acs.joc.0c01091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of the oligosaccharide moiety of disialosyl globopentaosylceramide (DSGb5 Cer), a dominant ganglioside isolated from malignant renal cell carcinoma tissues, is reported. The synthetic strategy relies on a chemical α(2,6)-sialylation at the internal GalNAc unit of a Gb5 pentasaccharide backbone that furnishes a Neu5Acα(2,6)GalNAc-linked hexasaccharide, suitable for an enzymatic α(2,3)-sialylation of the terminal Gal residue to construct a heptasaccharide glycan. Convergent access to this key α(2,6)-sialylated hexasaccharide was also achieved through a [3+3] glycosylation building upon a Galβ(1,3)[Neu5Acα(2,6)]GalNAc-based trisaccharide donor and a Gb3 acceptor. The synthetic DSGb5 glycan bearing a 6-azidohexyl aglycon at the reducing end could undergo further regioselective functionalization. This approach represents a viable chemoenzymatic method for accessing complex ganglioside glycans and should be useful for the synthesis and biological investigation of DSGb5 derivatives.
Collapse
Affiliation(s)
- Dung-Yeh Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yan-Ting Kuo
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ju Shen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
10
|
Pallister E, Gray CJ, Flitsch SL. Enzyme promiscuity of carbohydrate active enzymes and their applications in biocatalysis. Curr Opin Struct Biol 2020; 65:184-192. [PMID: 32942240 DOI: 10.1016/j.sbi.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
The application of biocatalysis for the synthesis of glycans and glycoconjugates is a well-established and successful strategy, both for small and large scale synthesis. Compared to chemical synthesis, is has the advantage of high selectivity, but biocatalysis had been largely limited to natural glycans both in terms of reactivity and substrates. This review describes recent advances in exploiting enzyme promiscuity to expand the range of substrates and reactions that carbohydrate active enzymes (CAZymes) can catalyse. The main focus is on formation and hydrolysis of glycosidic linkages, including sugar kinases, reactions that are central to glycobiotechnology. In addition, biocatalysts that generate sugar analogues and modify carbohydrates, such as oxidases, transaminases and acylases are reviewed. As carbohydrate active enzymes become more accessible and protein engineering strategies become faster, the application of biocatalysis in the generation of a wide range of glycoconjugates, beyond natural structures is expected to expand.
Collapse
Affiliation(s)
- Edward Pallister
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
11
|
Mertsch A, He N, Yi D, Kickstein M, Fessner W. An α2,3-Sialyltransferase from Photobacterium phosphoreum with Broad Substrate Scope: Controlling Hydrolytic Activity by Directed Evolution. Chemistry 2020; 26:11614-11624. [PMID: 32596832 PMCID: PMC7540698 DOI: 10.1002/chem.202002277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Defined sialoglycoconjugates are important molecular probes for studying the role of sialylated glycans in biological systems. We show that the α2,3-sialyltransferase from Photobacterium phosphoreum JT-ISH-467 (2,3SiaTpph ) tolerates a very broad substrate scope for modifications in the sialic acid part, including bulky amide variation, C5/C9 substitution, and C5 stereoinversion. To reduce the enzyme's hydrolytic activity, which erodes the product yield, an extensive structure-guided mutagenesis study identified three variants that show up to five times higher catalytic efficiency for sialyltransfer, up to ten times lower efficiency for substrate hydrolysis, and drastically reduced product hydrolysis. Variant 2,3SiaTpph (A151D) displayed the best performance overall in the synthesis of the GM3 trisaccharide (α2,3-Neu5Ac-Lac) from lactose in a one-pot, two-enzyme cascade. Our study demonstrates that several complementary solutions can be found to suppress the common problem of undesired hydrolysis activity of microbial GT80 sialyltransferases. The new enzymes are powerful catalysts for the synthesis of a wide variety of complex natural and new-to-nature sialoconjugates for biological studies.
Collapse
Affiliation(s)
- Alexander Mertsch
- Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Ning He
- Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Dong Yi
- Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Michael Kickstein
- Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Wolf‐Dieter Fessner
- Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Strasse 464287DarmstadtGermany
| |
Collapse
|
12
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Louçano J, Both P, Marchesi A, Bino LD, Adamo R, Flitsch S, Salwiczek M. Automated glycan assembly of Streptococcus pneumoniae type 14 capsular polysaccharide fragments. RSC Adv 2020; 10:23668-23674. [PMID: 35517348 PMCID: PMC9054924 DOI: 10.1039/d0ra01803a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022] Open
Abstract
S. pneumoniae is a major human pathogen with increasing antibiotic resistance. Pneumococcal vaccines consist of capsular polysaccharide (CPS) or their related fragments conjugated to a carrier protein. The repeating unit of S. pneumoniae type 14 CPS shares a core structure with the CPS of Group B Streptococcus (GBS) type III: the only difference is that the latter exhibits a sialic acid unit, with a α-2,3 linkage to galactose. Here, the automated glycan assembly (AGA) of two frameshifts of the repeating unit of S. pneumoniae type 14 is described. The same strategy is used to assemble dimers of the different repeating unit frameshifts. The four structures are assembled with only three commercially available monosaccharide building blocks. We also report an example of how enzymatic sialylation of the compounds obtained with AGA completes a synthetic route for GBS type III glycans. The synthesized structures were tested in competitive ELISA and further confirmed the branched tetrasaccharide Gal-Glc-(Gal-)GlcNAc to be the minimal epitope of S. pneumoniae type 14. A streamlined automated synthesis for S. pneumoniae type 14 and Group B Streptococcus type III capsular oligosaccharides with only one set of three building blocks is presented. Competitive ELISA provides some insight into minimal epitope.![]()
Collapse
Affiliation(s)
- João Louçano
- GlycoUniverse GmbH & Co KGaA
- 14476 Potsdam
- Germany
| | - Peter Both
- School of Chemistry
- University of Manchester
- Manchester Institute of Biotechnology
- Manchester M1 7DN
- UK
| | - Andrea Marchesi
- School of Chemistry
- University of Manchester
- Manchester Institute of Biotechnology
- Manchester M1 7DN
- UK
| | | | | | - Sabine Flitsch
- School of Chemistry
- University of Manchester
- Manchester Institute of Biotechnology
- Manchester M1 7DN
- UK
| | | |
Collapse
|
14
|
Chen JS, Sankar A, Lin YJ, Huang PH, Liao CH, Wu SS, Wu HR, Luo SY. Phosphotungstic acid as a novel acidic catalyst for carbohydrate protection and glycosylation. RSC Adv 2019; 9:33853-33862. [PMID: 35528919 PMCID: PMC9073715 DOI: 10.1039/c9ra06170c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023] Open
Abstract
This work demonstrates the utilization of phosphotungstic acid (PTA) as a novel acidic catalyst for carbohydrate reactions, such as per-O-acetylation, regioselective O-4,6 benzylidene acetal formation, regioselective O-4 ring-opening, and glycosylation. These reactions are basic and salient during the synthesis of carbohydrate-based bioactive oligomers. Phosphotungstic acid's high acidity and eco-friendly character make it a tempting alternative to corrosive homogeneous acids. The various homogenous acid catalysts were replaced by the phosphotungstic acid solely for different carbohydrate reactions. It can be widely used as a catalyst for organic reactions as it is thermally stable and easy to handle. In our work, the reactions are operated smoothly under ambient conditions; the temperature varies from 0 °C to room temperature. Good to excellent yields were obtained in all four kinds of reactions.
Collapse
Affiliation(s)
- Jyun-Siao Chen
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Arumugam Sankar
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Yi-Jyun Lin
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Po-Hsun Huang
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Chih-Hsiang Liao
- Taichung Municipal Feng Yuan Senior High School Taichung 420 Taiwan
| | - Shen-Shen Wu
- National Hsinchu Girls' Senior High School Hsinchu 300 Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, MOST Hsinchu 300 Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| |
Collapse
|
15
|
Pallister EG, Choo MSF, Tai JN, Leong DSZ, Tang WQ, Ng SK, Huang K, Marchesi A, Both P, Gray C, Rudd PM, Flitsch SL, Nguyen-Khuong T. Exploiting the Disialyl Galactose Activity of α2,6-Sialyltransferase from Photobacterium damselae To Generate a Highly Sialylated Recombinant α-1-Antitrypsin. Biochemistry 2019; 59:3123-3128. [DOI: 10.1021/acs.biochem.9b00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edward G. Pallister
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Matthew S. F. Choo
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Jien-Nee Tai
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Dawn S. Z. Leong
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Wen-Qin Tang
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Say-Kong Ng
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Kun Huang
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrea Marchesi
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Peter Both
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher Gray
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Pauline M. Rudd
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Sabine L. Flitsch
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| |
Collapse
|
16
|
Li PJ, Huang SY, Chiang PY, Fan CY, Guo LJ, Wu DY, Angata T, Lin CC. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo-series Glycans. Angew Chem Int Ed Engl 2019; 58:11273-11278. [PMID: 31140679 DOI: 10.1002/anie.201903943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Sialic-acid-binding, immunoglobulin-type lectin-7 (Siglec-7) is present on the surface of natural killer cells. Siglec-7 shows preference for disialylated glycans, including α(2,8)-α(2,3)-disialic acids or internally branched α(2,6)-NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one-pot multiple enzyme method from Gb5 by α2,3-sialylation (with PmST1) followed by α2,6-sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing-end galactose of Gb5 as 3,4-O-acetonide, 3,4-O-benzylidene, and 4,6-O-benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo-glycans. Surprisingly, DSGb5 shows a low affinity for Siglec-7 in a glycan microarray binding affinity assay. Among the synthesized globo-series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec-7.
Collapse
Affiliation(s)
- Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Szu-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Pei-Yun Chiang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Chen-Yo Fan
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Li-Jhen Guo
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Dung-Yeh Wu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
17
|
Li P, Huang S, Chiang P, Fan C, Guo L, Wu D, Angata T, Lin C. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo‐series Glycans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Szu‐Yu Huang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Pei‐Yun Chiang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Chen‐Yo Fan
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Li‐Jhen Guo
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Dung‐Yeh Wu
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Takashi Angata
- Institute of Biological ChemistryAcademia Sinica 128, Sec. 2, Academia Rd. Nankang Taipei 11529 Taiwan
| | - Chun‐Cheng Lin
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| |
Collapse
|
18
|
Agusti R, Gallo-Rodriguez C, de Lederkremer RM. Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydr Res 2019; 479:48-58. [PMID: 31132642 DOI: 10.1016/j.carres.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal β-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-β-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.
Collapse
Affiliation(s)
- Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Lu N, Ye J, Cheng J, Sasmal A, Liu CC, Yao W, Yan J, Khan N, Yi W, Varki A, Cao H. Redox-Controlled Site-Specific α2-6-Sialylation. J Am Chem Soc 2019; 141:4547-4552. [PMID: 30843692 DOI: 10.1021/jacs.9b00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first bacterial α2-6-sialyltransferase cloned from Photobacterium damselae (Pd2,6ST) has been widely applied for the synthesis of various α2-6-linked sialosides. However, the extreme substrate flexibility of Pd2,6ST makes it unsuitable for site-specific α2-6-sialylation of complex substrates containing multiple galactose and/or N-acetylgalactosamine units. To tackle this problem, a general redox-controlled site-specific sialylation strategy using Pd2,6ST is described. This approach features site-specific enzymatic oxidation of galactose units to mask the unwanted sialylation sites and precisely controlling the site-specific α2-6-sialylation at intact galactose or N-acetylgalactosamine units.
Collapse
Affiliation(s)
- Na Lu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jinfeng Ye
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jiansong Cheng
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| | - Wenlong Yao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jun Yan
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Hongzhi Cao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
20
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
21
|
Das A, Li PJ, Adak AK, Wu HR, Anwar MT, Chiang PY, Sun CM, Hwu JR, Lin CC. Stereoselective synthesis of a 9- O-sulfo Neu5Gc-capped O-linked oligosaccharide found on the sea urchin egg receptor. Org Chem Front 2019. [DOI: 10.1039/c8qo00996a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first total synthesis of a serine bearing α2→5-Oglycolyl-linked oligoNeu5Gc found on sea urchin egg cell surfaces has been accomplished.
Collapse
Affiliation(s)
- Anindya Das
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Pei-Jhen Li
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Avijit K. Adak
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | | | - Pei-Yun Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu-30013
- Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| |
Collapse
|
22
|
Fang JL, Tsai TW, Liang CY, Li JY, Yu CC. Enzymatic Synthesis of Human Milk Fucosides α1,2-Fucosylpara-Lacto-N-Hexaose and its Isomeric Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jia-Lin Fang
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road, Min-Hsiung Chiayi 62102 Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road, Min-Hsiung Chiayi 62102 Taiwan
| | - Chin-Yu Liang
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road, Min-Hsiung Chiayi 62102 Taiwan
| | - Jyun-Yi Li
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road, Min-Hsiung Chiayi 62102 Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road, Min-Hsiung Chiayi 62102 Taiwan
| |
Collapse
|
23
|
Enzymatic Synthesis of 6'-Sialyllactose, a Dominant Sialylated Human Milk Oligosaccharide, by a Novel exo-α-Sialidase from Bacteroides fragilis NCTC9343. Appl Environ Microbiol 2018; 84:AEM.00071-18. [PMID: 29678922 DOI: 10.1128/aem.00071-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Gut bacteria provide a rich source of glycosidases that can recognize and/or hydrolyze glycans for nutrition. Interestingly, some glycosidases have also been found to catalyze transglycosylation reactions in vitro and thus can be used for oligosaccharide synthesis. In this work, six putative and one known exo-α-sialidase genes-three from Bacteroides fragilis NCTC9343, three from Clostridium perfringens ATCC 13124, and one known from Bifidobacterium bifidum JCM1254-were subjected to gene cloning and heterogeneous expression in Escherichia coli The recombinant enzymes were purified, characterized for substrate specificity, and screened for transglycosylation activity. A sialidase, named BfGH33C, from B. fragilis NCTC9343 was found to possess excellent transglycosylation activity for the synthesis of sialylated human milk oligosaccharide. The native BfGH33C was a homodimer with a molecular weight of 113.6 kDa. The Km and kcat values for 4-methylumbelliferyl N-acetyl-α-d-neuraminic acid and sialic acid dimer were determined to be 0.06 mM and 283.2 s-1, and 0.75 mM and 329.6 s-1, respectively. The enzyme was able to transfer sialyl from sialic acid dimer or oligomer to lactose with high efficiency and strict α2-6 regioselectivity. The influences of the initial substrate concentration, pH, temperature, and reaction time on transglycosylation were investigated in detail. Using 40 mM sialic acid dimer (or 40 mg/ml oligomer) and 1 M lactose (pH 6.5) at 50°C for 10 min, BfGH33C could specifically produce 6'-sialyllactose, a dominant sialylated human milk oligosaccharide, at a maximal conversion ratio above 20%. It provides a promising alternative to the current chemical and enzymatic methods for obtaining sialylated oligosaccharides.IMPORTANCE Sialylated human milk oligosaccharides are significantly beneficial to the neonate, as they play important roles in supporting resistance to pathogens, gut maturation, immune function, and brain and cognitive development. Therefore, access to the sialylated oligosaccharides has attracted increasing attention both for the study of saccharide functions and for the development of infant formulas that could mimic the nutritional value of human milk. Nevertheless, nine-carbon sialic acids are rather complicated for the traditional chemical modifications, which require multiple protection and deprotection steps to achieve a specific glycosidic bond. Here, the exo-α-sialidase BfGH33C synthesized 6'-sialyllactose in a simple step with high transglycosylation activity and strict regioselectivity. Additionally, it could utilize oligosialic acid, which was newly prepared in an easy, economical way to reduce the substrate cost, as a glycosyl donor. All the studies laid a foundation for the practical use of BfGH33C in large-scale synthesis of sialylated oligosaccharides in the future.
Collapse
|
24
|
Lv X, Cao H, Lin B, Wang W, Zhang W, Duan Q, Tao Y, Liu XW, Li X. Synthesis of Sialic Acids, Their Derivatives, and Analogs by Using a Whole-Cell Catalyst. Chemistry 2017; 23:15143-15149. [DOI: 10.1002/chem.201703083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Hongzhi Cao
- National Glycoengineering Research Center; Shandong University; Jinan 250012 P. R. China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Wei Wang
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Wande Zhang
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Qian Duan
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Xue-Wei Liu
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
- Savaid Medical School; University of Chinese Academy of Sciences, Huairou District; Beijing 101408 P. R. China
- Center for Influenza Research and Early Warning (CASCIRE); Chinese Academy of Sciences, Chaoyang District; Beijing 100101 P. R. China
| |
Collapse
|
25
|
Capicciotti CJ, Zong C, Sheikh MO, Sun T, Wells L, Boons GJ. Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative. J Am Chem Soc 2017; 139:13342-13348. [PMID: 28858492 PMCID: PMC5705004 DOI: 10.1021/jacs.7b05358] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules.
Collapse
Affiliation(s)
- Chantelle J. Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - M. Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Tiantian Sun
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
26
|
Kuan TC, Wu HR, Adak AK, Li BY, Liang CF, Hung JT, Chiou SP, Yu AL, Hwu JR, Lin CC. Synthesis of an S-Linked α(2→8) GD3 Antigen and Evaluation of the Immunogenicity of Its Glycoconjugate. Chemistry 2017; 23:6876-6887. [DOI: 10.1002/chem.201700506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Ting-Chun Kuan
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| | - Avijit K. Adak
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| | - Ben-Yuan Li
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| | - Chien-Fu Liang
- Department of Chemistry; National Chung Hsing University, Taichung; Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Jih Ru Hwu
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry; National Tsing Hua University; Hsinchu- 300 Taiwan
| |
Collapse
|
27
|
Thomas B, Lu X, Birmingham WR, Huang K, Both P, Reyes Martinez JE, Young RJ, Davie CP, Flitsch SL. Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis. Chembiochem 2017; 18:858-863. [PMID: 28127867 DOI: 10.1002/cbic.201600678] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/14/2023]
Abstract
DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry.
Collapse
Affiliation(s)
- Baptiste Thomas
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Xiaojie Lu
- Encoded Library Technologies, NCE Molecular Discovery, R&D, Platform Technology & Science, GlaxoSmithKline, 830 Winter Street, Waltham, MA, 02451, USA
| | - William R Birmingham
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kun Huang
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Peter Both
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Juana Elizabeth Reyes Martinez
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Robert J Young
- Medicinal Chemistry, NCE Molecular Discovery, R&D, Platform Technology and Science, GlaxoSmithKline, GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Christopher P Davie
- Encoded Library Technologies, NCE Molecular Discovery, R&D, Platform Technology & Science, GlaxoSmithKline, 830 Winter Street, Waltham, MA, 02451, USA
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
28
|
Tang J, Ozhegov E, Liu Y, Wang D, Yao X, Sun XL. Straightforward Synthesis of N-Glycan Polymers from Free Glycans via Cyanoxyl Free Radical-Mediated Polymerization. ACS Macro Lett 2017; 6:107-111. [PMID: 35632901 DOI: 10.1021/acsmacrolett.6b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a straightforward synthesis of N-glycan polymers from free glycans via glycosylamine intermediates followed by acrylation and polymerization via cyanoxyl-mediated free radical polymerization (CMFRP) in one-pot fashion. No protection and deprotection were used in either glycomonomer or glycopolymer synthesis. A typical synthetic procedure for N-glycan polymers from free monosaccharide and disaccharide, Glc, Gal, Man, GlcNAc, and Lac, was demonstrated. In addition, enzymatic sialylation of the Lac-containing N-glycan polymers and their anti-influenza virus hemagglutination activities were investigated.
Collapse
Affiliation(s)
- Jinshan Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, West 601, Huangpu Avenue, Guangzhou, People’s Republic of China
| | - Evgeny Ozhegov
- Department
of Chemistry, Chemical and Biomedical Engineering and Center for Gene
Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Yang Liu
- Key
Laboratory of Structure-Based Drugs Design and Discovery of Ministry
of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Dan Wang
- Department
of Chemistry, Chemical and Biomedical Engineering and Center for Gene
Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, West 601, Huangpu Avenue, Guangzhou, People’s Republic of China
| | - Xue-Long Sun
- Department
of Chemistry, Chemical and Biomedical Engineering and Center for Gene
Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
29
|
Bernardi S, Yi D, He N, Casnati A, Fessner WD, Sansone F. Complete tetraglycosylation of a calix[4]arene by a chemo-enzymatic approach. Org Biomol Chem 2017; 15:10064-10072. [DOI: 10.1039/c7ob02448g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It was demonstrated that a calixarene can be a substrate for glycosyltransferases and thanks to an exhaustive glycosylation a multivalent tetralactosaminyl calix[4]arene was obtained.
Collapse
Affiliation(s)
- Silvia Bernardi
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| | - Dong Yi
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Ning He
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| | - Wolf-Dieter Fessner
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| |
Collapse
|
30
|
Ye J, Liu XW, Peng P, Yi W, Chen X, Wang F, Cao H. Diversity-Oriented Enzymatic Modular Assembly of ABO Histo-blood Group Antigens. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinfeng Ye
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Xian-wei Liu
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Peng Peng
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Wen Yi
- Institute
of Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Fengshan Wang
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
- Key
Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
- State Key
Laboratory of Microbiology, Shandong University, Jinan 250100, China
| |
Collapse
|
31
|
One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells. J Am Chem Soc 2016; 138:11575-11582. [PMID: 27541995 DOI: 10.1021/jacs.6b04049] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Technologies that can visualize, capture, and identify subsets of biomolecules that are not encoded by the genome in the context of healthy and diseased cells will offer unique opportunities to uncover the molecular mechanism of a multitude of physiological and disease processes. We describe here a chemical reporter strategy for labeling of cell surface glycoconjugates that takes advantage of recombinant glycosyltransferases and a corresponding sugar nucleotide functionalized by biotin. The exceptional efficiency of this method, termed one-step selective exoenzymatic labeling, or SEEL, greatly improved the ability to enrich and identify large numbers of tagged glycoproteins by LC-MS/MS. We further demonstrated that this labeling method resulted in far superior enrichment and detection of glycoproteins at the plasma membrane compared to a sulfo-NHS-activated biotinylation or two-step SEEL. This new methodology will make it possible to profile cell surface glycoproteomes with unprecedented sensitivity in the context of physiological and disease states.
Collapse
|
32
|
Luley-Goedl C, Schmoelzer K, Thomann M, Malik S, Greif M, Ribitsch D, Jung C, Sobek H, Engel A, Mueller R, Schwab H, Nidetzky B. Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for in vitro protein glycosylation. Glycobiology 2016; 26:1097-1106. [PMID: 27102286 DOI: 10.1093/glycob/cww046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023] Open
Abstract
Sialic acid groups of protein N-glycans are important determinants of biological activity. Exposed at the end of the glycan chain, they are potential targets for glycan remodeling. Sialyltransferases (STs; EC 2.4.99) are the enzymes that catalyze the sialic acid transfer from a CMP-activated donor on to a carbohydrate acceptor in vivo. Recombinant expression of the full-length human β-galactoside α2,6 sialyltransferase I (ST6Gal-I) was hampered and therefore variants with truncated N-termini were investigated. We report on the distinct properties of two N-terminally truncated versions of ST6Gal-I, namely Δ89ST6Gal-I and Δ108ST6Gal-I, which were successfully expressed in human embryonic kidney cells. The different properties of these enzymes result most probably from the loss of interactions from helix α1 in the Δ108ST6Gal-I variant, which plays a role in acceptor substrate binding. The Km for N-acetyl-d-lactosamine was 10-fold increased for Δ108ST6Gal-I (84 mM) as compared to Δ89ST6Gal-I (8.3 mM). The two enzyme variants constitute a suitable tool box for the terminal modification of N-glycans. While the enzyme Δ89ST6Gal-I exhibited both ST (di-sialylation) and sialidase activity on a monoclonal antibody, the enzyme Δ108ST6Gal-I showed only ST activity with specificity for mono-sialylation.
Collapse
Affiliation(s)
| | | | | | | | - Michael Greif
- Pharma Technical Development Fermentation, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Christine Jung
- Pharma Technical Development Fermentation, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | - Alfred Engel
- Costum Biotech, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Rainer Mueller
- Costum Biotech, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria .,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
33
|
Mehr K, Withers SG. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80. Glycobiology 2015; 26:353-9. [PMID: 26582604 DOI: 10.1093/glycob/cwv105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022] Open
Abstract
Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates.
Collapse
Affiliation(s)
- Kevin Mehr
- Department of Chemistry and Centre for High-throughput Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry and Centre for High-throughput Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|