1
|
Schober L, Schiefer A, Winkler M, Rudroff F. Harnessing nature's catalysts: Advances in enzymatic alkene cleavage. J Biotechnol 2024; 395:189-204. [PMID: 39362499 DOI: 10.1016/j.jbiotec.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Double bonds are prevalent in various substrates and renewable feedstocks, and their cleavage typically necessitates harsh reaction conditions involving high temperatures, organic solvents, and hazardous catalysts such as heavy metals or ozone. This review explores the sustainable enzymatic alternatives developed by nature for alkene cleavage. It provides a comprehensive overview of alkene-cleaving enzymes, detailing their mechanisms, substrate specificities, and applications. The enzymes discussed include those acting on aliphatic, cyclic, and activated aromatic systems. Emphasizing the significance of these biocatalysts in green chemistry and biocatalysis, this review highlights their potential to replace traditional chemical oxidants with safer, cost-effective, and environmentally friendly options. Future research directions include expanding enzyme substrate scopes, enhancing their operational stability and activity, and integrating them into scalable processes for broader application in the pharmaceutical, flavor, and fragrance industries.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, Graz, Austria
| | - Astrid Schiefer
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 163-OC, Vienna 1060, Austria
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, Graz, Austria; Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz, Austria.
| | - Florian Rudroff
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 163-OC, Vienna 1060, Austria.
| |
Collapse
|
2
|
Mu G, Gaynor RB, McIntyre BN, Donnadieu B, Creutz SE. Synthesis and Characterization of Bipyridyl-(Imidazole) n Mn(II) Compounds and Their Evaluation as Potential Precatalysts for Water Oxidation. Molecules 2023; 28:7221. [PMID: 37894706 PMCID: PMC10608871 DOI: 10.3390/molecules28207221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Metalloenzymes make extensive use of manganese centers for oxidative catalysis, including water oxidation; the need to develop improved synthetic catalysts for these processes has long motivated the development of bioinspired manganese complexes. Herein, we report a series of bpy-(imidazole)n (n = 1 or 2) (bpy = 2,2'-bipyridyl) ligands and their Mn2+ complexes. Four Mn2+ complexes are structurally characterized using single-crystal X-ray diffraction, revealing different tridentate and tetradentate ligand coordination modes. Cyclic voltammetry of the complexes is consistent with ligand-centered reductions and metal-centered oxidations, and UV-vis spectroscopy complemented by TD-DFT calculations shows primarily ligand-centered transitions with minor contributions from charge-transfer type transitions at higher energies. In solution, ESI-MS studies provide evidence for ligand reorganization, suggesting complex speciation behavior. The oxidation of the complexes in the presence of water is probed using cyclic voltammetry, but the low stability of the complexes in aqueous solution leads to decomposition and precludes their ultimate application as aqueous electrocatalysts. Possible reasons for the low stability and suggestions for improvement are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sidney E. Creutz
- Department of Chemistry, Mississippi State University, Mississippi State, Starkville, MS 39762, USA; (G.M.); (R.B.G.); (B.N.M.); (B.D.)
| |
Collapse
|
3
|
Schober L, Dobiašová H, Jurkaš V, Parmeggiani F, Rudroff F, Winkler M. Enzymatic reactions towards aldehydes: An overview. FLAVOUR FRAG J 2023; 38:221-242. [PMID: 38505272 PMCID: PMC10947199 DOI: 10.1002/ffj.3739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2024]
Abstract
Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Hana Dobiašová
- Institute of Chemical and Environmental EngineeringSlovak University of TechnologyBratislavaSlovakia
| | - Valentina Jurkaš
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Margit Winkler
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
- Area BiotransformationsAustrian Center of Industrial BiotechnologyGrazAustria
| |
Collapse
|
4
|
Grill B, Pavkov-Keller T, Grininger C, Darnhofer B, Gruber K, Hall M, Schwab H, Steiner K. Engineering TM1459 for Stabilisation against Inactivation by Amino Acid Oxidation. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Birgit Grill
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Christoph Grininger
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Barbara Darnhofer
- Medical University of Graz Core Facility Mass Spectrometry Stiftingtalstraße 24 8010 Graz Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Mélanie Hall
- University of Graz Institute of Chemistry Heinrichstraße 28 8010 Graz Austria
| | - Helmut Schwab
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- Graz University of Technology Institute of Molecular Biotechnology Petersgasse 14 8010 Graz Austria
| | - Kerstin Steiner
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
5
|
Wang X, Li Y, Li Z. Thiol-initiated photocatalytic oxidative cleavage of the CC bond in olefins and its extension to direct production of acetals from olefins. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01963a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative cleavage of a broad scope of olefins is realized over ZnIn2S4 under visible light, using air as oxidant and thiol as initiator. Coupled with the condensation between aldehydes/ketones and alcohols, this strategy can be used to yield acetals directly from olefins.
Collapse
Affiliation(s)
- Xinglin Wang
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Yuanyuan Li
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Zhaohui Li
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
6
|
Ou J, He S, Wang W, Tan H, Liu K. Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator- and additive-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00175b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Without employing any external catalyst, initiator and additives, an efficient and eco-friendly protocol has been developed for the synthesis of carbonyl compound via 1,4-dioxane- promoted oxidation of olefins with atmospheric O2 as the sole oxidant.
Collapse
Affiliation(s)
- Jinhua Ou
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
- Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Saiyu He
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Wei Wang
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Hong Tan
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Kaijian Liu
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| |
Collapse
|
7
|
Zhou Y, Sekar BS, Wu S, Li Z. Benzoic acid production via cascade biotransformation and coupled fermentation‐biotransformation. Biotechnol Bioeng 2020; 117:2340-2350. [DOI: 10.1002/bit.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| |
Collapse
|
8
|
Fujieda N, Ichihashi H, Yuasa M, Nishikawa Y, Kurisu G, Itoh S. Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nobutaka Fujieda
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai-shi Osaka 599-8531 Japan
| | - Haruna Ichihashi
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Miho Yuasa
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai-shi Osaka 599-8531 Japan
| | - Yosuke Nishikawa
- Institute for Protein Research Osaka University 3-2 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Genji Kurisu
- Institute for Protein Research Osaka University 3-2 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Shinobu Itoh
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
9
|
A DyP-Type Peroxidase of Pleurotus sapidus with Alkene Cleaving Activity. Molecules 2020; 25:molecules25071536. [PMID: 32230972 PMCID: PMC7181223 DOI: 10.3390/molecules25071536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and the corresponding gene was identified. The amino acid sequence as well as the predicted tertiary structure showed typical characteristics of DyPs as well as a non-canonical Mn2+-oxidation site on its surface. The gene was expressed in Komagataella pfaffii GS115 yielding activities up to 142 U/L using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) as substrate. PsaPOX exhibited optima at pH 3.5 and 40 °C and showed highest peroxidase activity in the presence of 100 µM H2O2 and 25 mM Mn2+. PsaPOX lacked the typical activity of DyPs towards anthraquinone dyes, but oxidized Mn2+ to Mn3+. In addition, bleaching of β-carotene and annatto was observed. Biotransformation experiments verified the alkene cleavage activity towards the aryl alkenes (E)-methyl isoeugenol, α-methylstyrene, and trans-anethole, which was increased almost twofold in the presence of Mn2+. The resultant aldehydes are olfactants used in the fragrance and flavor industry. PsaPOX is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production.
Collapse
|
10
|
Fujieda N, Ichihashi H, Yuasa M, Nishikawa Y, Kurisu G, Itoh S. Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angew Chem Int Ed Engl 2020; 59:7717-7720. [PMID: 32073197 DOI: 10.1002/anie.202000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/12/2022]
Abstract
Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded β-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantioselective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, calculated substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.
Collapse
Affiliation(s)
- Nobutaka Fujieda
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531, Japan
| | - Haruna Ichihashi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Miho Yuasa
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531, Japan
| | - Yosuke Nishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Zhang J, Xiao D, Tan H, Liu W. Highly Selective Synthesis of 2- tert-Butoxy-1-Arylethanones via Copper(I)-Catalyzed Oxidation/ tert-Butoxylation of Aryl Olefins with TBHP. J Org Chem 2020; 85:3929-3935. [PMID: 32052627 DOI: 10.1021/acs.joc.9b03156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A practical and environmentally friendly protocol for the selective oxidation of aryl olefins to arylethanone derivatives by using a Cu(I) catalyst and tert-butyl hydroperoxide (TBHP) has been developed. A series of 2-tert-butoxy-1-arylethanones were obtained in moderate to good yields under mild conditions with high selectivity. In this method, TBHP acts not only as an oxidant but also as the tert-butoxy and carbonyl oxygen sources. This enables one-step oxidation/tert-butoxylation. Various allyl peroxides were also synthesized from allyl substrates.
Collapse
Affiliation(s)
- Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Duoduo Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Hua Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Weibing Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| |
Collapse
|
12
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
13
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
14
|
Fujieda N, Nakano T, Taniguchi Y, Ichihashi H, Sugimoto H, Morimoto Y, Nishikawa Y, Kurisu G, Itoh S. A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase. J Am Chem Soc 2017; 139:5149-5155. [DOI: 10.1021/jacs.7b00675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nobutaka Fujieda
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takumi Nakano
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Taniguchi
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruna Ichihashi
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yosuke Nishikawa
- Institute
for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute
for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03654] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Raul SanMartin
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - María Teresa Herrero
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Esther Domínguez
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| |
Collapse
|
16
|
Fink M, Trunk S, Hall M, Schwab H, Steiner K. Engineering of TM1459 from Thermotoga maritima for Increased Oxidative Alkene Cleavage Activity. Front Microbiol 2016; 7:1511. [PMID: 27713741 PMCID: PMC5031596 DOI: 10.3389/fmicb.2016.01511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to twofold improved conversion level of styrene derivatives were successfully identified. Especially, changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope.
Collapse
Affiliation(s)
- Matthias Fink
- Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Sarah Trunk
- Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Mélanie Hall
- Department of Chemistry, University of GrazGraz, Austria
| | - Helmut Schwab
- Austrian Centre of Industrial BiotechnologyGraz, Austria
- Institute of Molecular Biotechnology, Graz University of TechnologyGraz, Austria
| | | |
Collapse
|
17
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|