1
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
2
|
Yu Y, Wu SF, Zhu XB, Yuan Y, Li Z, Ye KY. Electrochemical Sulfoxidation of Thiols and Alkyl Halides. J Org Chem 2022; 87:6942-6950. [PMID: 35512330 DOI: 10.1021/acs.joc.2c00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfoxides are actively engaged as versatile synthetic building blocks, chiral ligands, bioactive molecules, and function materials. However, their oxidative syntheses from thioethers are inevitably impeded by overoxidation, excess oxidants, and the tedious preparation of thioethers. To address these shortcomings, we report herein a highly selective electrochemical sulfoxidation reaction featuring the use of simple starting materials, i.e., thiols and alkyl halides, in a single operation.
Collapse
Affiliation(s)
- Yi Yu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shao-Fen Wu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Bin Zhu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Scattolin T, Simoens A, Stevens CV, Nolan SP. Flow chemistry of main group and transition metal complexes. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Li C, Xu R, Song Q, Mao Z, Li J, Yang H, Chen J. Highly efficient photocatalytic oxidation of C-H bond based on microchannel reactor. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
6
|
Burg F, Buchelt C, Kreienborg NM, Merten C, Bach T. Enantioselective Synthesis of Diaryl Sulfoxides Enabled by Molecular Recognition. Org Lett 2021; 23:1829-1834. [PMID: 33606936 DOI: 10.1021/acs.orglett.1c00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective sulfoxidation of diaryl-type sulfides was accomplished using a chiral manganese porphyrin complex equipped with a remote molecular recognition site. Despite the marginal size difference between the two substituents at the prostereogenic sulfur center, hydrogen bonding enabled the formation of chiral sulfoxides with exquisite enantioselectivities (16 examples, up to 99% ee). Aside from the precise orientation of a distinct substrate, the quinolone lactam offers an excellent entry point for further derivatization.
Collapse
Affiliation(s)
- Finn Burg
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Christoph Buchelt
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Nora M Kreienborg
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
7
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Tang XF, Zhao JN, Wu YF, Zheng ZH, Ma CF, Yu ZY, Yun L, Liu GZ, Meng QW. Asymmetric α-hydroxylation of β-dicarbonyl compounds by C-2′ modified cinchonine-derived phase-transfer catalysts in batch and flow microreactors. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1781183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiao-Fei Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi, P.R. China
| | - Jing-Nan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Yu-Feng Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Ze-Hao Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Cun-Fei Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Zong-Yi Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Guang-Zhi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Qing-Wei Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| |
Collapse
|
9
|
Wang YF, Jiang ZH, Chu MM, Qi SS, Yin H, Han HT, Xu DQ. Asymmetric copper-catalyzed fluorination of cyclic β-keto esters in a continuous-flow microreactor. Org Biomol Chem 2020; 18:4927-4931. [PMID: 32573633 DOI: 10.1039/d0ob00588f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective homogeneous fluorination of cyclic β-keto esters catalyzed by diphenylamine linked bis(oxazoline)-Cu(OTf)2 complexes has been established in a continuous flow microreactor. The microreactor allowed an efficient transformation with reaction times ranging from 0.5 to 20 min, and the desired products were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee) at a low catalyst loading of 1 mol%.
Collapse
Affiliation(s)
- Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Hui Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hao Yin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Te Han
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
10
|
Wojaczyńska E, Wojaczyński J. Modern Stereoselective Synthesis of Chiral Sulfinyl Compounds. Chem Rev 2020; 120:4578-4611. [PMID: 32347719 PMCID: PMC7588045 DOI: 10.1021/acs.chemrev.0c00002] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 12/22/2022]
Abstract
Chiral sulfinyl compounds, sulfoxides, sulfoximines, sulfinamides, and other derivatives, play an important role in asymmetric synthesis as versatile auxiliaries, ligands, and catalysts. They are also recognized as pharmacophores found in already marketed and well-sold drugs (e.g., esomeprazole) and used in drug design. This review is devoted to the modern methods of preparation of sulfinyl derivatives in enantiopure or enantiomerically enriched form. Selected new approaches leading to racemic products for which the asymmetric variant can be developed in the future are mentioned as well.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego
27, 50 370 Wrocław, Poland
| | - Jacek Wojaczyński
- Faculty
of Chemistry, University of Wrocław 14 F. Joliot-Curie St., 50 383 Wrocław, Poland
| |
Collapse
|
11
|
Yu T, Ding Z, Nie W, Jiao J, Zhang H, Zhang Q, Xue C, Duan X, Yamada YMA, Li P. Recent Advances in Continuous-Flow Enantioselective Catalysis. Chemistry 2020; 26:5729-5747. [PMID: 31916323 DOI: 10.1002/chem.201905151] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Indexed: 11/05/2022]
Abstract
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Chao Xue
- State Key Laboratory for Efficient Development and, Utilization of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Xinhua Duan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
13
|
Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y. Sodium Hypochlorite Pentahydrate Crystals (NaOCl·5H2O): A Convenient and Environmentally Benign Oxidant for Organic Synthesis. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00288] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Masayuki Kirihara
- Department
of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Tomohide Okada
- R&D Department of Chemicals, Nippon Light Metal Company, Ltd., 480 Kambara, Shimizu-ku, Shizuoka 421-3203, Japan
| | - Yukihiro Sugiyama
- R&D Department of Chemicals, Nippon Light Metal Company, Ltd., 480 Kambara, Shimizu-ku, Shizuoka 421-3203, Japan
| | - Miyako Akiyoshi
- Research
Center for Explosion Safety, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8565, Japan
| | - Takehiro Matsunaga
- Research
Center for Explosion Safety, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8565, Japan
| | - Yoshikazu Kimura
- Research
and Development Department, Iharanikkei Chemical Industry Co. Ltd., 5700-1 Kambara, Shimizu-ku, Shizuoka 421-3203, Japan
| |
Collapse
|
14
|
Bryliakov KP. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chem Rev 2017; 117:11406-11459. [DOI: 10.1021/acs.chemrev.7b00167] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
15
|
Dai W, Shang S, Lv Y, Li G, Li C, Gao S. Highly Chemoselective and Enantioselective Catalytic Oxidation of Heteroaromatic Sulfides via High-Valent Manganese(IV)–Oxo Cation Radical Oxidizing Intermediates. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wen Dai
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Sensen Shang
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Ying Lv
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Guosong Li
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Shuang Gao
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| |
Collapse
|