1
|
Hoque IU, Samanta A, Pramanik S, Chowdhury SR, Lo R, Maity S. Photocascade chemoselective controlling of ambident thio(seleno)cyanates with alkenes via catalyst modulation. Nat Commun 2024; 15:5739. [PMID: 38982050 PMCID: PMC11233607 DOI: 10.1038/s41467-024-49279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical 'on-demand' direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Injamam Ul Hoque
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Soumyadeep Roy Chowdhury
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, Prague, 160 000, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India.
| |
Collapse
|
2
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
3
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
4
|
Maeda B, Murakami K. Recent advancement in the synthesis of isothiocyanates. Chem Commun (Camb) 2024; 60:2839-2864. [PMID: 38380440 DOI: 10.1039/d3cc06118c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Isothiocyanates exhibit various biological characteristics, including antimicrobial, anti-inflammatory, and anticancer properties. Their significance extends to synthetic chemistry, where they serve as valuable platforms for versatile transformations. Consequently, they have attracted the attention of biologists and chemists. This review summarizes recent advancements in the synthesis of isothiocyanates. Access to a variety of starting materials is important to prepare isothiocyanates with diverse structures. This review categorizes synthetic methods into three types based on the starting materials and functional groups: (i) type A, derived from primary amines; (ii) type B, derived from other nitrogen functional groups; and (iii) type C, derived from non-nitrogen groups. Recent trends in synthetic methods have revealed the prevalence of type-A reactions derived from primary amines. However, type B reactions have rarely been reported. Notably, over the past four years, there has been a notable increase in type C reactions, indicating a growing interest in non-nitrogen-derived isothiocyanates. Overall, this review not only outlines the advancements in the synthesis of isothiocyanates but also highlights trends in the methodology.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
5
|
Doraghi F, Aledavoud SP, Ghanbarlou M, Larijani B, Mahdavi M. N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations. Beilstein J Org Chem 2023; 19:1471-1502. [PMID: 37799175 PMCID: PMC10548256 DOI: 10.3762/bjoc.19.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
In the field of organosulfur chemistry, sulfenylating agents are an important key in C-S bond formation strategies. Among various organosulfur precursors, N-sulfenylsuccinimide/phthalimide derivatives have shown highly electrophilic reactivity for the asymmetric synthesis of many organic compounds. Hence, in this review article, we focus on the application of these alternative sulfenylating reagents in organic transformations.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Pegah Aledavoud
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang Y, Wu J, Qiu W, Liao L, Wang B, Zhao X. Lewis Acid-Mediated Electrophilic Thiolative Difunctionalization of Enimides: Rapid Access to β-Amino Sulfides. Org Lett 2023. [PMID: 37384740 DOI: 10.1021/acs.orglett.3c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
An efficient and practical route for the synthesis of β-amino sulfides by Lewis acid-mediated electrophilic thiolative difunctionalization of enimides is disclosed. A series of free phenols, electron-rich arene, alcohol, azide, and hydride, are successfully incorporated into the substrates in high regio- and stereoselectivities under mild conditions. The obtained products possess multiple functional groups and can be easily transformed to other valuable molecules.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaping Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Wangzhen Qiu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Bo Wang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
7
|
Wei YF, Gao WC, Chang HH, Jiang X. Recent advances in thiolation via sulfur electrophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review systematically summarizes the recent developments for constructing sulfur compounds from sulfur electrophiles, and the mechanism mainly involved thirranium ions, sulfur ylides, C–S cross coupling and electrophilic substitution.
Collapse
Affiliation(s)
- Ya-Feng Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuefeng Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
8
|
Jiang L, Liu Y, Meng X, Xian M, Xu C. Adsorption behavior study and mechanism insights into novel isothiocyanate modified material towards Pd2+. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
Guo W, Wang Q, Zhu J. Selective 1,2‐Aminoisothiocyanation of 1,3‐Dienes Under Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weisi Guo
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
- College of Chemistry & Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Guo W, Wang Q, Zhu J. Selective 1,2‐Aminoisothiocyanation of 1,3‐Dienes Under Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 60:4085-4089. [DOI: 10.1002/anie.202014518] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Weisi Guo
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
- College of Chemistry & Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
12
|
Yu W, Yang S, Wang PL, Li P, Li H. BF 3·OEt 2-mediated cyclization of β,γ-unsaturated oximes and hydrazones with N-(arylthio/arylseleno)succinimides: an efficient approach to synthesize isoxazoles or dihydropyrazoles. Org Biomol Chem 2020; 18:7165-7173. [PMID: 32966513 DOI: 10.1039/d0ob01388a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly efficient BF3·OEt2-mediated cyclization of β,γ-unsaturated oximes and tosylhydrazones with N-(arylthio/arylseleno)succinimides has been established for the construction of N-heterocycles in a one-step manner. This metal-free cyclization provides direct access to isoxazoles and dihydropyrazoles in good to excellent yields at room temperature. The mechanistic experiments support the formation of a cationic species PhS+ which plays a critical role in this cyclization process.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Shichao Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China. and Information College, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| |
Collapse
|
13
|
Liu C, Li Z, Weng Z, Fang X, Zhao F, Tang K, Chen J, Ma W. Transition‐Metal‐Free Selective C(sp
3
)−H Thiolation of Arylacetamides with Substituted Benzenethiols, Aryl Sulfenylchlorides and Diaryl Disulfides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Changying Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Kehui Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Jianyang Chen
- College of Chemistry and Environmental EngineeringChongqing University of Arts and Sciences No.319 Honghe Avenue, Yongchuan Chongqing P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| |
Collapse
|
14
|
Zhang JS, Liu L, Chen T, Han LB. Transition-Metal-Catalyzed Three-Component Difunctionalizations of Alkenes. Chem Asian J 2018; 13:2277-2291. [DOI: 10.1002/asia.201800647] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Ji-Shu Zhang
- College of Chemistry and Chemical engineering; Hunan University; Changsha Hunan 410082 China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources; College of Materials and Chemical Engineering; Hainan University; Haikou, Hainan 570228 China
| | - Tieqiao Chen
- College of Chemistry and Chemical engineering; Hunan University; Changsha Hunan 410082 China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources; College of Materials and Chemical Engineering; Hainan University; Haikou, Hainan 570228 China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
15
|
Aerobic intramolecular aminothiocyanation of unactivated alkenes promoted by in situ generated iodine thiocyanate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Tao ZK, Li CK, Zhang PZ, Shoberu A, Zou JP, Zhang W. Phosphinoyl Radical-Initiated 1,2-Bifunctional Thiocyanodiphenylphosphinoylation of Alkenes. J Org Chem 2018; 83:2418-2424. [DOI: 10.1021/acs.joc.7b02929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ze-Kun Tao
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
and Chemical Engineering, Soochow University, Jiangsu 215123, China
| | - Cheng-Kun Li
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
and Chemical Engineering, Soochow University, Jiangsu 215123, China
| | - Pei-Zhi Zhang
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
and Chemical Engineering, Soochow University, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
and Chemical Engineering, Soochow University, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
and Chemical Engineering, Soochow University, Jiangsu 215123, China
| | - Wei Zhang
- Department
of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
17
|
Liu T, Tian J, Gao WC, Chang HH, Liu Q, Li X, Wei WL. Intermolecular sulfenoamination of alkenes with sulfonamides and N-sulfanylsuccinimides to access β-sulfonylamino sulfides and dihydrobenzothiazines. Org Biomol Chem 2017; 15:5983-5992. [DOI: 10.1039/c7ob01225j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acid-catalyzed intermolecular sulfenoamination of alkenes is developed with sulfonylamides as the N-source, enabling the synthesis of β-sulfonylamino sulfides and dihydrobenzothiazines.
Collapse
Affiliation(s)
- Tao Liu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Jun Tian
- College of Date Science
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Wen-Chao Gao
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Hong-Hong Chang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Wen-Long Wei
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| |
Collapse
|
18
|
Yu J, Jiang M, Song Z, He T, Yang H, Fu H. Iron-Catalyzed Azidoalkylthiation of Alkenes with Trimethylsilyl Azide and 1-(Alkylthio)pyrrolidine-2,5-diones. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jipan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| | - Zhixuan Song
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| | - Tiancheng He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| | - Haijun Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China,
| |
Collapse
|