1
|
Gong N, Zhao Z, James Young D, Cao X, Ren ZG, Li HX. Catalyst-Free Photooxidative N-Acylation of Azoles with Aldehydes. Chemistry 2025:e202404225. [PMID: 39743481 DOI: 10.1002/chem.202404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
A catalyst-free photochemical N-acylation of azoles with aldehydes has been developed using inexpensive BrCCl3 as the oxidant. This transition-metal- and photocatalyst-free amidation proceeded efficiently with a wide variety of substrates to give the corresponding N-acylazoles, including for the late modification of pharmaceutically active molecules, and on a gram-scale.
Collapse
Affiliation(s)
- Nianfeng Gong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zelin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - David James Young
- James Watt School of Engineering, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Xiangqian Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Garg S, Choudhary MK, Kataria J. Unlocking the potential of biogenic Ag@g-C 3N 4 in sustainable water purification: A kinetic and photocatalytic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125126. [PMID: 39414072 DOI: 10.1016/j.envpol.2024.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This research introduces a pioneering biogenic deposition-precipitation method for synthesis of Ag@g-C3N4 nanocomposites (NCs) employing fennel seed extract (FSE). This technique involves the reduction and capping of silver nanoparticles (AgNPs) onto g-C3N4, employing polyphenolic content of FSE, consequently establishing a strong Schottky junction. The, NCs were characterized through various spectroscopic and microscopic techniques, confirming successful biogenic deposition of AgNPs and purity of prepared nanomaterials. Further, the synthesized NCs were utilized for photocatalytic degradation of various hazardous pollutants viz. Rhodamine-B (Rh-B) dye, Tetracycline (TCy) antibiotic, Imidacloprid (IMD) insecticide and deactivation of E. coli microbes. Amongst the synthesized NCs, 3 wt% Ag@g-C3N4 NCs exhibited superior photocatalytic mitigation of Rh-B (99.26%, k = 90.4 × 10-3 min-1), TCy (96.86%, k = 40.2 × 10-3 min-1), IMD (95.7%, k = 34.96 × 10-3 min-1) and E. coli deactivation (99.5%, k = 49.19 × 10-3 min-1). Moreover, the rate constants revealed many-fold increase in photocatalytic degradation of pollutants, contrary to pristine g-C3N4 (k = 11.8 × 10-3 min-1). This investigation also unveils an intricate photocatalytic mitigation pathway for the aforementioned-contaminants, elucidating key role of superoxide radical anions in photocatalytic mitigation. One of the significant highlights of this research is the sustainable and cost-effective synthesis methodology involving fennel seeds, which not only ensures the wide availability of resources but also guarantees environmental safety, in alignment with green principles.
Collapse
Affiliation(s)
- Sunny Garg
- Department of Chemistry, Panjab University Research Centre, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32-C, Chandigarh, 160030, India
| | - Manoj Kumar Choudhary
- Nanomaterial Research Laboratory, Department of Chemistry, Guru Nanak National College, Doraha, Ludhiana, Punjab, 141421, India.
| | - Jyoti Kataria
- Department of Chemistry, Panjab University Research Centre, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32-C, Chandigarh, 160030, India
| |
Collapse
|
3
|
Kumari A, Roy RS, Gautam UK, Sengupta S. Naphthalene Monoanhydride and Perylene Composites for Efficient Photocatalytic Hydrogen Evolution and Metal-Free Heterogeneous Oxidative Amidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59234-59244. [PMID: 39405577 DOI: 10.1021/acsami.4c11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This study explores the synthesis of two visible light active organic chromophore-based composites using naphthalene monoanhydride (Np) and 1,7-dibromoperylene monoanhydride diester (PMDE). These chromophores feature favorable optical and electronic properties and polyaromatic skeletons with anhydride functionalities that facilitate π-π interactions between the chromophore and polymeric carbon nitride (CN) or covalent connections of chromophores with NH2 groups of CN. Accordingly, heterogeneous chromophore-CN composite photocatalysts namely, Np/CN(c) and PMDE/CN(c) were prepared by adopting in situ calcination (c) and composites Np/CN(a) and PMDE/CN(a) were prepared by ex situ physical adsorption (a) methods. In situ prepared Np/CN(c) and PMDE/CN(c) composites exhibited H2 evolution rates (HER) of 1069 and 705 μmol h-1 g-1, respectively, which are significantly higher than ex situ Np/CN(a) and PMDE/CN(a) composites with HER of 465 and 252 μmol h-1 g-1, respectively. These rates are 10, 7, 4.8, and 2.5 times higher than the bulk-CN, indicating the potential of these composites for efficient photocatalytic H2 evolution. Surface area normalized HER enhancements were 3.8, 5.3, 6.6, and 4.2 times higher for Np/CN(c), PMDE/CN(c), Np/CN(a), and PMDE/CN(a) respectively compared to bulk-CN. These composite photocatalysts exhibited excellent stabilities under prolonged photoirradiation, with H2 evolution consistently increasing with the light exposure time. Additionally, these metal-free heterogeneous composites demonstrated efficient photocatalytic activities towards oxidative amidation of aromatic aldehydes, with up to 80% product yields, establishing the prospects of combining homogeneous and heterogeneous entities in a metal-free active material in solar energy harvesting.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Yang W, Wang F, Wang H, Ding D, Jiang S, Zhang G. Platform for the Immobilizing of Ultrasmall Pd Clusters for Carbonylation: In Situ Self-Templating Fabrication of ZIF-8 on ZnO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306794. [PMID: 38072816 DOI: 10.1002/smll.202306794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, β-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+, respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Fangchao Wang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - He Wang
- The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001, P. R. China
| | - Ding Ding
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Guoying Zhang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
5
|
Liang Z, Guo J, Wang P, Zhu L, Yao X. Recyclable Cu/g-C3N4 nanometric semiconductor catalyzed N-formylation of amines via photocatalytic aerobic oxidative C-C bond cleavage of aldehydes under visible-light irradiation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV. Environmentally Benign Approaches towards the Synthesis of Quinolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asim Kumar
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Kirti Sharma
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Krupa A. Patel
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Rajvi V. Hirani
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| |
Collapse
|
7
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
8
|
Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Visible‐Light‐Induced Oxidative α‐Alkylation of Glycine Derivatives with Ethers under Metal‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Hao Zhang
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
9
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
10
|
Shams M, Balouchi H, Alidadi H, Asadi F, Goharshadi EK, Rezania S, Rtimi S, Anastopoulos I, Bonyadi Z, Mehranzamir K, Giannakoudakis DA. Coupling electrocoagulation and solar photocatalysis for electro- and photo-catalytic removal of carmoisine by Ag/graphitic carbon nitride: Optimization by process modeling and kinetic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Jiang H, Cheng H, Zang C, Tan J, Sun B, Bian F. Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Li Z, Wu L, Guo J, Shao Y, Song Y, Ding Y, Zhu L, Yao X. Light‐Promoted Minisci Coupling Reaction of Ethers and Aza Aromatics Catalyzed by Au/TiO
2
Heterogeneous Photocatalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhanchong Li
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Liangying Wu
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 P. R. China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 P. R. China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| |
Collapse
|
13
|
Xu L, Zhang SZ, Li W, Zhang ZH. Visible-Light-Mediated Oxidative Amidation of Aldehydes by Using Magnetic CdS Quantum Dots as a Photocatalyst. Chemistry 2021; 27:5483-5491. [PMID: 33403733 DOI: 10.1002/chem.202005138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Indexed: 12/20/2022]
Abstract
A magnetic CdS quantum dot (Fe3 O4 /polydopamine (PDA)/CdS) was synthesized through a facile and convenient method from inexpensive starting materials. Characterization of the prepared catalyst was performed by means of FTIR spectroscopy, XRD, SEM, TEM, energy-dispersive X-ray spectroscopy, and vibrating-sample magnetometer techniques. Fe3 O4 /PDA/CdS was found to be a highly active photocatalyst for the amidation of aromatic aldehydes by using air as a clean oxidant under mild conditions. The photocatalyst can be recovered by magnetic separation and successfully reused for five cycles without considerable loss of its catalytic activity.
Collapse
Affiliation(s)
- Ling Xu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Shuai-Zheng Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Wei Li
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| |
Collapse
|
14
|
Yu M, Wu C, Zhou L, Zhu L, Yao X. Aerobic Oxidation of Aldehydes to Carboxylic Acids Catalyzed by Recyclable Ag/C3N4 Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807210137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Collapse
Affiliation(s)
- Min Yu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Chaolong Wu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhou
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 210029,China
| | - Xiaoquan Yao
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| |
Collapse
|
15
|
Zhang L, Morello G, Carr SB, Armstrong FA. Aerobic Photocatalytic H2 Production by a [NiFe] Hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay. J Am Chem Soc 2020; 142:12699-12707. [DOI: 10.1021/jacs.0c04302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liyun Zhang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| | - Giorgio Morello
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| |
Collapse
|
16
|
Assis M, Groppo Filho FC, Pimentel DS, Robeldo T, Gouveia AF, Castro TFD, Fukushima HCS, Foggi CC, Costa JPC, Borra RC, Andrés J, Longo E. Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect 2020. [DOI: 10.1002/slct.202000502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcelo Assis
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| | | | - Dayene S. Pimentel
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| | - Thaiane Robeldo
- Laboratory of Applied Immunology, Department of Genetics and EvolutionUniversidade Federal de São Carlos P.O. Box 676, 13565–905, São Carlos São Paulo Brazil
| | - Amanda F. Gouveia
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| | - Tassia F. D. Castro
- Laboratory of Applied Immunology, Department of Genetics and EvolutionUniversidade Federal de São Carlos P.O. Box 676, 13565–905, São Carlos São Paulo Brazil
| | - Hirla C. S. Fukushima
- Laboratory of Applied Immunology, Department of Genetics and EvolutionUniversidade Federal de São Carlos P.O. Box 676, 13565–905, São Carlos São Paulo Brazil
| | - Camila C. Foggi
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| | - João P. C. Costa
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| | - Ricardo C. Borra
- Laboratory of Applied Immunology, Department of Genetics and EvolutionUniversidade Federal de São Carlos P.O. Box 676, 13565–905, São Carlos São Paulo Brazil
| | - Juan Andrés
- Department of Analytical and Physical ChemistryUniversity Jaume I (UJI) Castelló 12071 Spain
| | - Elson Longo
- CDMFUniversidade Federal de São Carlos P.O. Box 676, 13565–905 São Carlos, São Paulo Brazil
| |
Collapse
|
17
|
Wang P, Wang X, Niu X, Zhu L, Yao X. Visible-light-induced photoxidation-Povarov cascade reaction: synthesis of 2-arylquinoline through alcohol and N-benzylanilines under mild conditions via Ag/g-C3N4 nanometric semiconductor catalyst. Chem Commun (Camb) 2020; 56:4840-4843. [DOI: 10.1039/d0cc00885k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ag/g-C3N4 nanometric semiconductor catalyzed cascade reaction for the synthesis of 2-arylquinoline through alcohol and N-benzylanilines under visible light irradiation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Applied Chemistry
- School of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Xiaowen Wang
- Department of Applied Chemistry
- School of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Xiyu Niu
- Department of Applied Chemistry
- School of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Li Zhu
- Department of Chemistry
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Xiaoquan Yao
- Department of Applied Chemistry
- School of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| |
Collapse
|
18
|
Xu Q, Zhao P, Shi YK, Li JS, You WS, Zhang LC, Sang XJ. Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism. NEW J CHEM 2020. [DOI: 10.1039/d0nj01122c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A g-C3N4/Co3O4/Ag2O nanocomposite shows good photocatalytic activities towards the degradation of RhB and H2O2 production via the two-electron reduction of oxygen.
Collapse
Affiliation(s)
- Qian Xu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Yu-Kun Shi
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Jian-Sheng Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Wan-Sheng You
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Lan-Cui Zhang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Xiao-Jing Sang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|
19
|
Xu H, Wu L, Tian J, Wang J, Wang P, Niu X, Yao X. Copper Nanoparticles on Ordered Mesoporous Carbon Nitride Support: a Superior Catalyst for Homo- and Cross-Coupling of Terminal Alkynes under Base-Free Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Xu
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Liangying Wu
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Jing Tian
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Jun Wang
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Peng Wang
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Xiyu Niu
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| | - Xiaoquan Yao
- Department of Applied Chemistry; College of Material Science and Technology; Nanjing University of Aeronautics & Astronautics; 210016 Nanjing Jiangsu P. R. China
| |
Collapse
|
20
|
Rai VK, Verma F, Mahata S, Bhardiya SR, Singh M, Rai A. Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190709113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.
Collapse
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Fooleswar Verma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Smita R. Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
21
|
Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09607-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Dadwal S, Deol H, Kumar M, Bhalla V. AIEE Active Nanoassemblies of Pyrazine Based Organic Photosensitizers as Efficient Metal-Free Supramolecular Photoredox Catalytic Systems. Sci Rep 2019; 9:11142. [PMID: 31366949 PMCID: PMC6668430 DOI: 10.1038/s41598-019-47588-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 01/27/2023] Open
Abstract
Pyrazine derivatives DIPY, TETPY and CNDIPY have been designed and synthesized which form fluorescent supramolecular assemblies in mixed aqueous media due to their AIEE and ICT characteristics. Among all the derivatives, the assemblies of TETPY and CNDIPY show strong absorption in the visible region with high absorption coefficients, low HOMO-LUMO gap, and high photostability. Further, the supramolecular nanoassemblies of TETPY and CNDIPY show excellent potential to generate reactive oxygen species (ROS) under the visible light irradiation. Owing to their strong absorption in the visible region and ROS generation ability, the supramolecular nanoassemblies of TETPY and CNDIPY act as efficient photoredox catalytic systems for carrying out (a) oxidative amidation of aromatic aldehydes (b) hydroxylation of boronic acid and (c) oxidative homocoupling of benzylamines under mild conditions such as aqueous media, aerial environment, and natural sunlight as a source of irradiation. All the mechanistic investigations suggest the participation of in-situ generated ROS in the organic transformations upon light irradiation.
Collapse
Affiliation(s)
- Shruti Dadwal
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Harnimarta Deol
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
23
|
Niu J, Xie Y, Luo H, Wang Q, Zhang Y, Wang Y. Cobalt oxide loaded graphitic carbon nitride as adsorptive photocatalyst for tetracycline removal from aqueous solution. CHEMOSPHERE 2019; 218:169-178. [PMID: 30471497 DOI: 10.1016/j.chemosphere.2018.11.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The treatment of antibiotic-containing wastewater is of great importance due to the potential threats of antibiotics to human and the ecosystem. We reported the preparation of cobalt oxide loaded graphitic carbon nitride (CoO/g-C3N4) by an impregnation-calcination method for tetracycline (TC) removal from aqueous solution. The developed CoO/g-C3N4 exhibited high adsorption capacity and fast adsorption kinetic for TC due to the complexation of TC with surface loaded CoO. In particular, 7%CoO/gC3N43 sample presented a maximum TC adsorption capacity of 391.4 mg g-1. It was found that Langmuir and pseudo-second order kinetic models fitted TC adsorption process well. Further photocatalytic studies showed that CoO loaded g-C3N4 was active for TC photodegradation, although the photocatalytic reaction rate constant was lower than that of native g-C3N4. CoO nanoparticles loading on g-C3N4 played the major role of adsorption sites rather than cocatalyst for photocatalysis. We believe that the developed CoO/g-C3N4 could be a potential adsorptive photocatalyst for antibiotic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jinye Niu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Xie
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Haiqiong Luo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yabo Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
24
|
Macedo NG, Machado TR, Roca RA, Assis M, Foggi CC, Puerto-Belda V, Mínguez-Vega G, Rodrigues A, San-Miguel MA, Cordoncillo E, Beltrán-Mir H, Andrés J, Longo E. Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag2WO4 Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS APPLIED BIO MATERIALS 2019; 2:824-837. [DOI: 10.1021/acsabm.8b00673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nadia G. Macedo
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| | - Thales R. Machado
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| | - Roman A. Roca
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| | - Marcelo Assis
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| | - Camila Cristina Foggi
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| | | | | | - André Rodrigues
- Department of Physical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Miguel A. San-Miguel
- Department of Physical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | | | | | - Elson Longo
- CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, São Paulo13565-905, Brazil
| |
Collapse
|
25
|
Gaspa S, Raposo I, Pereira L, Mulas G, Ricci PC, Porcheddu A, De Luca L. Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. NEW J CHEM 2019. [DOI: 10.1039/c9nj01984g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A transition metal- and organophotocatalyst free synthesis of esters, carboxylic anhydrides and amides from aldehydes induced by visible-light has been reported.
Collapse
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Inês Raposo
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Leonor Pereira
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Gabriele Mulas
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Pier Carlo Ricci
- Dipartimento di Fisica
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
26
|
Shen H, Xue W, Fu F, Sun J, Zhen Y, Wang D, Shao B, Tang J. Efficient Degradation of Phenol and 4‐Nitrophenol by Surface Oxygen Vacancies and Plasmonic Silver Co‐Modified Bi
2
MoO
6
Photocatalysts. Chemistry 2018; 24:18463-18478. [DOI: 10.1002/chem.201804267] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Huidong Shen
- Shaanxi Key Laboratory of Chemical Reaction EngineeringCollege of Chemistry and Chemical EngineeringYan'an University Yan'an 716000 P. R. China
| | - Wenwen Xue
- Shaanxi Key Laboratory of Chemical Reaction EngineeringCollege of Chemistry and Chemical EngineeringYan'an University Yan'an 716000 P. R. China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction EngineeringCollege of Chemistry and Chemical EngineeringYan'an University Yan'an 716000 P. R. China
| | - Jiefang Sun
- Department of Chemical EngineeringUniversity College London Torrington Place London WC1E 7JE UK
- Beijing Center for Disease Prevention and Control Beijing 100013 P. R. China
| | - Yanzhong Zhen
- Shaanxi Key Laboratory of Chemical Reaction EngineeringCollege of Chemistry and Chemical EngineeringYan'an University Yan'an 716000 P. R. China
| | - Danjun Wang
- Shaanxi Key Laboratory of Chemical Reaction EngineeringCollege of Chemistry and Chemical EngineeringYan'an University Yan'an 716000 P. R. China
| | - Bing Shao
- Beijing Center for Disease Prevention and Control Beijing 100013 P. R. China
| | - Junwang Tang
- Department of Chemical EngineeringUniversity College London Torrington Place London WC1E 7JE UK
| |
Collapse
|
27
|
Cu2O modified g-C3N4 as an effective catalyst for the synthesis of propargylamines: experimental, quantum mechanical mechanistic and kinetic study. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1491-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Xu H, Wang J, Wang P, Niu X, Luo Y, Zhu L, Yao X. Recyclable Cu/C 3N 4 composite catalyzed AHA/A 3 coupling reactions for the synthesis of propargylamines. RSC Adv 2018; 8:32942-32947. [PMID: 35547691 PMCID: PMC9086382 DOI: 10.1039/c8ra06613b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
The heterogeneous Cu/C3N4 catalyst was found to be efficient for the synthesis of propargylamines using a three-component coupling reaction of alkynes, CH2Cl2 and amines (AHA) without additional base. Moreover, the catalyst also showed highly catalytic activity in the synthesis of C1-alkynylated tetrahydroisoquinolines (THIQs) via an A3 reaction of alkynes, aldehydes and THIQ. The Cu/C3N4-catalyzed multicomponent reactions exhibited good functional group tolerance in most examples. Furthermore, the easily prepared Cu/C3N4 catalyst could be recovered and reused conveniently over 5 times without losing catalytic activities.
Collapse
Affiliation(s)
- Hang Xu
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jun Wang
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Peng Wang
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Xiyu Niu
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yidan Luo
- Department of Chemistry, School of Pharmacy, Nanjing Medical University Nanjing 211166 PR China
| | - Li Zhu
- Department of Chemistry, School of Pharmacy, Nanjing Medical University Nanjing 211166 PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
29
|
Yang H, Li X, Wang X, Chen W, Bian W, Choi MMF. Silver-doped graphite carbon nitride nanosheets as fluorescent probe for the detection of curcumin. LUMINESCENCE 2018; 33:1062-1069. [DOI: 10.1002/bio.3509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Haifen Yang
- School of Pharmacy; Shanxi Medical University; Taiyuan P. R. China
| | - Xuebing Li
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Xinxv Wang
- Shanxi Experimental Secondary School; Taiyuan P. R. China
| | - Wenfang Chen
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Wei Bian
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Martin M. F. Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church; Bristol UK
| |
Collapse
|
30
|
Devthade V, Kamble G, Ghugal SG, Chikhalia KH, Umare SS. Visible Light-Driven Biginelli Reaction over Mesoporous g-C3
N4
Lewis-Base Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201800591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vidyasagar Devthade
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
| | | | - Sachin G Ghugal
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
- School of Chemistry; University of Hyderabad, Gachibowli; Hyderabad India
| | | | - Suresh S Umare
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
| |
Collapse
|
31
|
Fang G, Cong X, Zanoni G, Liu Q, Bi X. Silver-Based Radical Reactions: Development and Insights. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601179] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Guichun Fang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Giuseppe Zanoni
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University, Tianjin; 300071 People's Republic of China
| |
Collapse
|