1
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
2
|
Casti F, Mocci R, Porcheddu A. From amines to (form)amides: a simple and successful mechanochemical approach. Beilstein J Org Chem 2022; 18:1210-1216. [PMID: 36158174 PMCID: PMC9490066 DOI: 10.3762/bjoc.18.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023] Open
Abstract
Two easily accessible routes for preparing an array of formylated and acetylated amines under mechanochemical conditions are presented. The two methodologies exhibit complementary features as they enable the derivatization of aliphatic and aromatic amines.
Collapse
Affiliation(s)
- Federico Casti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Cai BG, Li Q, Empel C, Li L, Koenigs RM, Xuan J. Dark and Light Reactions of Carbenes─Merging Carbene Transfer Reactions with N-Heterocyclic Carbene Catalysis for the Synthesis of Hydroxamic Acid Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
5
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
7
|
Broumidis E, Jones MC, Vilela F, Lloyd GO. Mechanochemical Synthesis of N‐Aryl Amides from O‐Protected Hydroxamic Acids. Chempluschem 2020; 85:1754-1761. [DOI: 10.1002/cplu.202000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Emmanouil Broumidis
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Mary C. Jones
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Filipe Vilela
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Gareth O. Lloyd
- School of ChemistryJoseph Banks LaboratoriesUniversity of Lincoln Lincoln LN6 7TS United Kingdom
| |
Collapse
|
8
|
Nagalingam V, Sreenivasulu R, Madhavarao N, Dittakavi R, Mannam K. Intramolecular cyclization of N-hydroxy-2-phenoxyacetamides and 3-phenoxypropanamides. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Jiang J, Li J. Mechanically Induced
N
‐arylation of Amines with Diaryliodonium Salts. ChemistrySelect 2020. [DOI: 10.1002/slct.201904188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Jiang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jianjun Li
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
10
|
Porcheddu A, Delogu F, De Luca L, Fattuoni C, Colacino E. Metal-free mechanochemical oxidations in Ertalyte ® jars. Beilstein J Org Chem 2019; 15:1786-1794. [PMID: 31435450 PMCID: PMC6664414 DOI: 10.3762/bjoc.15.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/05/2019] [Indexed: 02/03/2023] Open
Abstract
Aimed at eliminating or at least significantly reducing the use of solvents, sodium hypochlorite pentahydrate crystals (NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical (TEMPO or AZADO) have been successfully used to induce mechanochemical oxidative processes on several structurally different primary and secondary alcohols. The proposed redox process is safe, inexpensive and performing effectively, especially on the macroscale. Herein, an Ertalyte® jar has been successfully used, for the first time, in a mechanochemical process.
Collapse
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato (Ca), Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100-Sassari, Italy
| | - Claudia Fattuoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato (Ca), Italy
| | - Evelina Colacino
- Université de Montpellier & Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253 CNRS – UM – ENSCM, 8 Rue de l’Ecole Normale, 34296 Montpellier, Cedex 5, France
| |
Collapse
|
11
|
Colacino E, Porcheddu A, Charnay C, Delogu F. From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00069k] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sustainable preparation of hydantoin-based Active Pharmaceutical Ingredients (APIs) using modern non-conventional activation methods, including mechanochemistry is herein described.
Collapse
Affiliation(s)
- Evelina Colacino
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR-5253 CNRS-UM
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 05
- France
| | - Andrea Porcheddu
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- Cittadella Universitaria
- 09028 Monserrato
- Italy
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR-5253 CNRS-UM
- Université de Montpellier
- 34095 Montpellier Cedex 05
- France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali
- Università degli Studi di Cagliari
- Italy
| |
Collapse
|
12
|
Hong SY, Park Y, Hwang Y, Kim YB, Baik MH, Chang S. Selective formation of γ-lactams via C-H amidation enabled by tailored iridium catalysts. Science 2018; 359:1016-1021. [PMID: 29496875 DOI: 10.1126/science.aap7503] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023]
Abstract
Intramolecular insertion of metal nitrenes into carbon-hydrogen bonds to form γ-lactam rings has traditionally been hindered by competing isocyanate formation. We report the application of theory and mechanism studies to optimize a class of pentamethylcyclopentadienyl iridium(III) catalysts for suppression of this competing pathway. Modulation of the stereoelectronic properties of the auxiliary bidentate ligands to be more electron-donating was suggested by density functional theory calculations to lower the C-H insertion barrier favoring the desired reaction. These catalysts transform a wide range of 1,4,2-dioxazol-5-ones, carbonylnitrene precursors easily accessible from carboxylic acids, into the corresponding γ-lactams via sp3 and sp2 C-H amidation with exceptional selectivity. The power of this method was further demonstrated by the successful late-stage functionalization of amino acid derivatives and other bioactive molecules.
Collapse
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yeongyu Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yeong Bum Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Mocci R, Murgia S, De Luca L, Colacino E, Delogu F, Porcheddu A. Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Org Chem Front 2018. [DOI: 10.1039/c7qo01006k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A very efficient mechanically activated synthesis of isocyanides directly from primary amines and without extra-solvent addition has been reported.
Collapse
Affiliation(s)
- Rita Mocci
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Sergio Murgia
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Lidia De Luca
- Università degli Studi di Sassari
- Dipartimento di Chimica e Farmacia
- 07100 Sassari
- Italy
| | - Evelina Colacino
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
- Institut des Biomolécules Max Mousseron
| | - Francesco Delogu
- Università degli Studi di Cagliari
- Dipartimento di Ingegneria Meccanica
- Chimica
- e dei Materiali
- Cagliari
| | - Andrea Porcheddu
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| |
Collapse
|
14
|
Affiliation(s)
- Davin Tan
- Department of Chemistry; McGill University; 801 Sherbrooke St.W. H3A0B8 Montreal Canada
| | - Tomislav Friščić
- Department of Chemistry; McGill University; 801 Sherbrooke St.W. H3A0B8 Montreal Canada
| |
Collapse
|
15
|
Porcheddu A, Colacino E, Cravotto G, Delogu F, De Luca L. Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations. Beilstein J Org Chem 2017; 13:2049-2055. [PMID: 29062426 PMCID: PMC5647725 DOI: 10.3762/bjoc.13.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/28/2017] [Indexed: 01/27/2023] Open
Abstract
The present work addresses the development of an eco-friendly and cost-efficient protocol for the oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones by mechanical processing under air. Ball milling was shown to promote the quantitative conversion of a broad set of alcohols into carbonyl compounds with no trace of an over-oxidation to carboxylic acids. The mechanochemical reaction exhibited higher yields and rates than the classical, homogeneous, TEMPO-based oxidation.
Collapse
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09028 Monserrato (Ca), Italy
| | - Evelina Colacino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09028 Monserrato (Ca), Italy.,Institut des Biomolécules Max Mousseron (IBMM) UMR5247 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, cc1703, 34095 Montpellier Cedex 05, France
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 3, 09123 Cagliari, Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
16
|
Sanna D, Rocchitta G, Serra M, Abbondio M, Serra PA, Migheli R, De Luca L, Garribba E, Porcheddu A. Synthesis of Nitric Oxide Donors Derived from Piloty's Acid and Study of Their Effects on Dopamine Secretion from PC12 Cells. Pharmaceuticals (Basel) 2017; 10:E74. [PMID: 28872590 PMCID: PMC5620618 DOI: 10.3390/ph10030074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
This study investigated the mechanisms and kinetics of nitric oxide (NO) generation by derivatives of Piloty's acid (NO-donors) under physiological conditions. In order to qualitatively and quantitatively measure NO release, electron paramagnetic resonance (EPR) was carried out with NO spin trapping. In addition, voltammetric techniques, including cyclic voltammetry and constant potential amperometry, were used to confirm NO release from Piloty's acid and its derivatives. The resulting data showed that Piloty's acid derivatives are able to release NO under physiological conditions. In particular, electron-withdrawing substituents favoured NO generation, while electron-donor groups reduced NO generation. In vitro microdialysis, performed on PC12 cell cultures, was used to evaluate the dynamical secretion of dopamine induced by the Piloty's acid derivatives. Although all the studied molecules were able to induce DA secretion from PC12, only those with a slow release of NO have not determined an autoxidation of DA itself. These results confirm that the time-course of NO-donors decomposition and the amount of NO released play a key role in dopamine secretion and auto-oxidation. This information could drive the synthesis or the selection of compounds to use as potential drugs for the therapy of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, 07040 Sassari, Italy.
| | - Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, 07040 Sassari, Italy.
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Rossana Migheli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Lidia De Luca
- Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Eugenio Garribba
- Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato, Italy.
| |
Collapse
|
17
|
Gaspa S, Porcheddu A, Valentoni A, Garroni S, Enzo S, De Luca L. A Mechanochemical-Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche; Università degli Studi di Cagliari; Cittadella Universitaria 09042 Monserrato Italy
| | - Antonio Valentoni
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Sebastiano Garroni
- International Research Centre in Critical Raw Materials-ICCRAM; University of Burgos; Plaza Misael Banuelos s/n 09001 Burgos Spain
- Advanced Materials; Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154, University of Burgos; Hospital del Rey s/n 09001 Burgos Spain
| | - Stefano Enzo
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; via Vienna 2 07100 Sassari Italy
| |
Collapse
|