1
|
Fernandes RA. Deciphering the quest in the divergent total synthesis of natural products. Chem Commun (Camb) 2023; 59:12205-12230. [PMID: 37746673 DOI: 10.1039/d3cc03564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The divergent synthesis of natural products is rapidly developing towards achieving the goal of efficiency and economy in total synthesis. However, presently, the sustainable development of the synthesis of natural products does not permit the linear synthesis of a single target. In this case, divergent total synthesis is based on the identification of an advanced intermediate with structural features that can be mapped in more than two molecules. However, the identification of this intermediate and its scalable synthesis in enantiopure form are challenging. Herein, we present the details of the ingenious efforts by researchers in the last six years toward the divergent synthesis of two to as many as eight natural products initially via a single route, and then diverging from a common intermediate and further branching out toward several natural products. The planning and strategies adopted can serve as guidelines for the future development of efficient divergent routes aimed at achieving higher efficiency toward multiple targets, causing divergent synthesis to become an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
2
|
Theoretical study on the mechanism of the carbonylation cyclization of 1,5-diynes with hydrosilanes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Hutchinson L, Wilger D. Indenone Synthesis via Transition‐Metal‐Catalyzed Annulation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Li L, Liu XL, Liang JY, He YY, Ma AJ, Wang WF, Peng JB. Palladium Catalyzed Dicarbonylation of α-Iodo-Substituted Alkylidenecyclopropanes: Synthesis of Carbamoyl Substituted Indenones. Org Lett 2022; 24:5624-5628. [PMID: 35894628 DOI: 10.1021/acs.orglett.2c02399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed dicarbonylation of α-iodo-substituted ACPs for the synthesis of carbamoyl substituted indenones has been developed. Two carbonyl groups were incorporated into the product with the cleavage of the proximal C-C bond of the ACPs. A broad range of carbamoyl substituted indenones were efficiently prepared in good to excellent yields.
Collapse
Affiliation(s)
- Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Yan Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Wei-Feng Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China.,State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
5
|
Hynds HM, Lemons HE, Willis JD, Bell MJ, Bottcher SE, Dye MLN, Echols ET, Garner EL, Hutchinson LE, Phillips CM, Stephens CP, Gilbert TM, Wilger DJ. Ni-Catalyzed Larock Indenone Annulation with Aliphatic- and Silyl-Substituted Alkynes Supported by Mechanistic Analysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hannah M. Hynds
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Holli E. Lemons
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Jasmine D. Willis
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - MarKayla J. Bell
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Sydney E. Bottcher
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Mei Lin N. Dye
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Emily T. Echols
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Edward L. Garner
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Lauren E. Hutchinson
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Caleb M. Phillips
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Claudia P. Stephens
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Thomas M. Gilbert
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Dale J. Wilger
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| |
Collapse
|
6
|
Selaković Ž, Nikolić AM, Ajdačić V, Opsenica IM. Application of Transition Metal‐Catalyzed Decarbonylation of Aldehydes in the Total Synthesis of Natural Products. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Života Selaković
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| | - Andrea M. Nikolić
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| | - Vladimir Ajdačić
- Innovative Centre Faculty of Chemistry, Ltd. Studentski trg 12–16 11158 Belgrade Serbia
| | - Igor M. Opsenica
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| |
Collapse
|
7
|
Das S, Dutta A. Recent advances in transition-metal-catalyzed annulations for the construction of a 1-indanone core. NEW J CHEM 2021. [DOI: 10.1039/d0nj06318e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metal-catalyzed carbon–carbon bond forming reactions are a well accepted strategy for the synthesis of organic compounds. This review gives a brief update on the transition-metal-catalyzed annulations to construct 1-indanone scaffolds.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- Naihati
- India
| | - Arpita Dutta
- Department of Chemistry
- Rishi Bankim Chandra Evening College
- Naihati
- India
| |
Collapse
|
8
|
Sakurai Y, Ogiwara Y, Sakai N. Palladium‐Catalyzed Annulation of Acyl Fluorides with Norbornene via Decarbonylation and CO Reinsertion. Chemistry 2020; 26:12972-12977. [DOI: 10.1002/chem.202001374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yuka Sakurai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| |
Collapse
|
9
|
Santhi J, Baire B. One‐pot, Direct Synthesis of 3‐Hydroxy‐3‐aryl‐1‐indanones and their 2‐Benzylidene Derivatives from 2‐Alkynylbenzophenones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jampani Santhi
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| | - Beeraiah Baire
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| |
Collapse
|
10
|
Ji X, Gu Y, Cheng C, Wu Z, Zhang Y. Palladium‐Catalyzed Three‐Component Reactions for the Synthesis of Norbornane‐Fused Indanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoming Ji
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yichao Gu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| |
Collapse
|
11
|
Liu C, Wang B, Guo Z, Zhang J, Xie M. Metal-free cascade rearrangement/radical addition/oxidative C–H annulation of propargyl alcohols with sodium sulfinates: access to 2-sulfenylindenones. Org Chem Front 2019. [DOI: 10.1039/c9qo00688e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A facile protocol for the construction of 2-sulfenylindenones via one-pot cascade rearrangement/radical addition/oxidative C–H cyclization of propargyl alcohols with sodium sulfinates has been developed.
Collapse
Affiliation(s)
- Changqing Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Bo Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
12
|
Mannu A, Drexler HJ, Thede R, Ferro M, Baumann W, Rüger J, Heller D. Oxidative addition of CH2Cl2 to neutral dimeric rhodium diphosphine complexes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Mannu A, Ferro M, Möller S, Heller D. Monomerisation of [Rh2(1,3-Bis-(Diphenylphosphino)-Propane)2(μ2-Cl)2] Detected by Pulsed Gradient Spin Echo Spectroscopy and 31P Nmr Monitoring of Metathesis Experiments. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15333065984578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A pulsed gradient spin echo experiment on [Rh2(1,3-bis-(diphenylphosphino)-propane)2(μ2-Cl)2] complex has been conducted in order to shed light on the supposed monomerisation process of [Rh2(diphosphine)2(μ2-Cl)2] complexes in solution. Such a process should generate a 14-electron [Rh(diphosphine)Cl] complex, which has only been postulated to date. Metathesis experiments on [Rh2(1,3-bis-(diphenylphosphino)-propane)2(μ2-Cl)2] and [Rh2(bis[2-(diphenylphosphino)phenyl]ether)2(μ2-Cl)2] complexes, analysed by 31P NMR, reveal that monomerisation of [Rh2(diphosphine)2(μ2-Cl)2] complexes is not restricted to the case of 1,3-bis-(diphenylphosphino)propane.
Collapse
Affiliation(s)
- Alberto Mannu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Saskia Möller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
14
|
Xu L, Wang C, Gao Z, Zhao YM. Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp3 C–H Bond Oxidation. J Am Chem Soc 2018; 140:5653-5658. [PMID: 29627977 DOI: 10.1021/jacs.8b03015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
15
|
Furusawa T, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Rhodium-catalyzed Carbonylative Annulation of 2-Bromobenzylic Alcohols with Internal Alkynes Using Furfural via β-Aryl Elimination. CHEM LETT 2017. [DOI: 10.1246/cl.170249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takuma Furusawa
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Hiroki Tanimoto
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Yasuhiro Nishiyama
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Tsumoru Morimoto
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Kiyomi Kakiuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| |
Collapse
|