1
|
Wang J, Lin Phang Y, Yu YJ, Liu NN, Xie Q, Zhang FL, Jin JK, Wang YF. Boryl Radical as a Catalyst in Enabling Intra- and Intermolecular Cascade Radical Cyclization Reactions: Construction of Polycyclic Molecules. Angew Chem Int Ed Engl 2024; 63:e202405863. [PMID: 38589298 DOI: 10.1002/anie.202405863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a β-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yee Lin Phang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - You-Jie Yu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nan-Nan Liu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Feng-Lian Zhang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ji-Kang Jin
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Feng Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Roy VJ, Dagar N, Choudhury S, Raha Roy S. Unified Approach to Diverse Heterocyclic Synthesis: Organo-Photocatalyzed Carboacylation of Alkenes and Alkynes from Feedstock Aldehydes and Alcohols. J Org Chem 2023; 88:15374-15388. [PMID: 37871233 DOI: 10.1021/acs.joc.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade. The proposed reaction mechanism was further illuminated by a number of spectroscopic studies. Furthermore, we applied this protocol for the late-stage functionalization of pharmaceuticals and blockbuster drugs.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagata Choudhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Huang XH, Liu FL, Fu TF, Hu X, Wang YY, Liu B, Teng MY, Huang GL. Visible light-induced radical cascade acylmethylation/cyclization of 2-(allyloxy)arylaldehydes with α-bromo ketones: access to cyclic 1,5-dicarbonyl-containing chroman-4-one skeletons. Org Biomol Chem 2023; 21:6772-6777. [PMID: 37563967 DOI: 10.1039/d3ob01101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A novel photocatalytic protocol for effective and efficient synthesis of cyclic 1,5-diketones containing chroman-4-one skeletons in moderate to good yields via radical cascade acylmethylation/cyclization of 2-(allyloxy)arylaldehydes with α-bromo ketones has been described. This reaction features a broad substrate scope, good functional group tolerance, and metal- and oxidant-free conditions. An acylmethyl radical-triggered cascade cyclization was involved.
Collapse
Affiliation(s)
- Xiao-Hong Huang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Feng-Lin Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Ting-Feng Fu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Xiao Hu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Ya-Yu Wang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Bo Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Ming-Yu Teng
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Guo-Li Huang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| |
Collapse
|
4
|
Ding Y, Yu S, Ren M, Lu J, Fu Q, Zhang Z, Wang Q, Bai J, Hao N, Yang L, Wei S, Yi D, Wei J. Redox-neutral and metal-free synthesis of 3-(arylmethyl)chroman-4-ones via visible-light-driven alkene acylarylation. Front Chem 2022; 10:1059792. [PMID: 36385990 PMCID: PMC9660241 DOI: 10.3389/fchem.2022.1059792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2023] Open
Abstract
A metal- and aldehyde-free visible-light-driven photoredox-neutral alkene acylarylation with readily available cyanoarenes is described. A variety of 3-(arylmethyl)chroman-4-ones (i.e., homoisoflavonoids) and analogs are efficiently synthesized with good functional group tolerance. This mild protocol relies on a phosphoranyl radical-mediated acyl radical-initiated cyclization and selective radical-radical coupling sequence, and is also further highlighted by subsequent derivatization to chromone and 2H-chromene as well as its application in the three-component alkene acylarylation.
Collapse
Affiliation(s)
- Yan Ding
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Ren
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qiang Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhijie Zhang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Wang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Na Hao
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Yang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dong Yi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Xie LY, Peng S, Yang LH, Liu XW. Metal-Free Synthesis of Carbamoylated Chroman-4-Ones via Cascade Radical Annulation of 2-(Allyloxy)arylaldehydes with Oxamic Acids. Molecules 2022; 27:molecules27207049. [PMID: 36296640 PMCID: PMC9609457 DOI: 10.3390/molecules27207049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
An efficient and straightforward approach for the synthesis of carbamoylated chroman-4-ones has been well-developed. The reaction is triggered through the generation of carbamoyl radicals from oxamic acids under metal-free conditions, which subsequently undergoes decarboxylative radical cascade cyclization on 2-(allyloxy)arylaldehydes to afford various amide-containing chroman-4-one scaffolds with high functional group tolerance and a broad substrate scope.
Collapse
|
6
|
Hintz HA, Sevov CS. Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers. Nat Commun 2022; 13:1319. [PMID: 35288543 PMCID: PMC8921278 DOI: 10.1038/s41467-022-28992-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
While the electrooxidative activation of carboxylic acids is an attractive synthetic methodology, the resulting transformations are generally limited to either homocoupling or further oxidation followed by solvent capture. These reactions require extensive electrolysis at high potentials, which ultimately renders the methodology incompatible with metal catalysts that could possibly provide new and complementary product distributions. This work establishes a proof-of-concept for a rare and synthetically-underutilized strategy for selective electrooxidation of carboxylic acids in the presence of oxidatively-sensitive catalysts that control reaction selectivity. We leverage the formation of self-adsorbed monolayers of carboxylate substrates at the anode to promote selective oxidation of the adsorbed carboxylate over a more easily-oxidized catalyst. Consequently, reactions operate at lower potentials, greater faradaic efficiencies, and improved catalyst compatibility over conventional approaches, which enables reactions to be performed with inexpensive Fe complexes that catalyze selective radical additions to olefins.
Collapse
Affiliation(s)
- Heather A Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, 151W Woodruff Avenue, Columbus, OH, 43210, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151W Woodruff Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
7
|
|
8
|
Lu H, Lu Z, Shang M. Organic Sulfinic Acids and Salts in Visible Light-Induced Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1671-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractSulfinic acids and their salts are a useful source of sulfur-containing structures. Photocatalysis of these compounds with visible light enables to achieve various transformations under mild conditions. This review summarizes visible-light-induced reactions of sulfinic acids and their salts. It is organized by reaction type and brief discussions on plausible reaction mechanisms for typical transformations are presented.1 Introduction2 Sulfonylation Reactions2.1 Sulfonylation of Alkenes2.2 Sulfonylation of Alkynes2.3 Sulfonylation of Arenes2.4 sp3 C–H Functionalization3 Desulfonylation Reactions4 Sulfenylation Reactions4.1 Sulfenylation of Heteroarenes4.2 Sulfenylation of Carbonyl Chlorides5 Conclusions
Collapse
Affiliation(s)
- Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University
| | - Zheng Lu
- School of Pharmacy, Jiangsu University
| | - Mingzhou Shang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University
| |
Collapse
|
9
|
Zhou X, Zhang A, Zhang Q, Liu Q, Xuan J. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yechun W, Jintao Y. Recent Advances in the Decarboxylative Acylation/Cyclization of α-Keto Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
12
|
Wang W, Zhang M, Yang W, Yang X. Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Copper-catalyzed radical cascade cyclization of 2-(allyloxy)arylaldehydes towards chroman-4-one derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Yang WC, Chen CY, Li JF, Wang ZL. Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Kang QQ, Zhang WK, Ge GP, Zheng H, Wei WT. The construction of benzimidazo[2,1- a]isoquinolin-6(5 H)-ones from N-methacryloyl-2-phenylbenzoimidazoles through radical strategies. Org Biomol Chem 2021; 19:8874-8885. [PMID: 34610071 DOI: 10.1039/d1ob01465j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzimidazo[2,1-a]isoquinolin-6(5H)-one constitutes a structurally unique class of tetracyclic N-heterocycles that are found throughout a myriad of biologically active natural products, pharmaceutical compounds, and functional materials. Various synthetic routes for the preparation of benzimidazo[2,1-a]isoquinolin-6(5H)-ones have been reported. In particular, the use of N-methacryloyl-2-phenylbenzoimidazoles to construct benzimidazo[2,1-a]isoquinolin-6(5H)-ones through various radical strategies have attracted widespread attention due to the versatility and simple preparation of raw materials, as well as the step-economy and mild reaction conditions. Using representative examples, we highlight significant progress in the synthesis of benzimidazo[2,1-a]isoquinolin-6(5H)-ones, including the selection of the catalytic system, substrate scope, mechanistic understanding, and applications. The contents of this review focus on the development of C-, S-, P-, and Si-centered radical addition-intramolecular cyclization strategies.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei-Kang Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
16
|
Diana EJ, Kanchana US, Mathew TV. Current developments in the synthesis of 4-chromanone-derived compounds. Org Biomol Chem 2021; 19:7995-8008. [PMID: 34494068 DOI: 10.1039/d1ob01352a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chroman-4-one framework is a significant structural entity that belongs to the class of oxygen-containing heterocycles. It acts as a major building block in a large class of medicinal compounds, and synthetic compounds exhibit a broad variety of remarkable biological and pharmaceutical activities. Several studies have been performed to improve the methodologies of 4-chromanone-derived compounds. This review focuses on the major synthetic methods of preparation reported on chroman-4-one derivatives from 2016 to 2021.
Collapse
Affiliation(s)
- Elizabeth J Diana
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India. .,Department of Chemistry, Alphonsa College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| | - U S Kanchana
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| | - Thomas V Mathew
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| |
Collapse
|
17
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Zhu H, Zheng H, Zhang J, Feng J, Kong L, Zhang F, Xue XS, Zhu G. Solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes: access to cyclopentenones and dihydropyranols. Chem Sci 2021; 12:11420-11426. [PMID: 34567496 PMCID: PMC8409468 DOI: 10.1039/d1sc03416b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 01/20/2023] Open
Abstract
Divergent synthesis is a powerful strategy for the fast assembly of different molecular scaffolds from identical starting materials. We describe here a solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes with sulfonyl chlorides for the direct construction of highly functionalized cyclopentenones and dihydropyranols that widely exist in bioactive molecules and natural products. Density functional theory calculations suggest that a unique N,N-dimethylacetamide-assisted 1,2-hydrogen transfer of alkoxy radicals is responsible for the cyclopentenone formation, whereas a C–C cleavage accounts for the selective production of dihydropyranols in acetonitrile and water at 50 °C. Given the simple and mild reaction conditions, excellent functional group compatibility, forming up to four chemical bonds, and tunable selectivity, it may find wide applications in synthetic chemistry. A solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes is developed, providing a facile access to sulfonylated cyclopentenones and dihydropyranols under mild conditions.![]()
Collapse
Affiliation(s)
- Haiqian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Hanliang Zheng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Junhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
19
|
Zhou J, Huang M, Liang Y, Wan Y. A Synergetic Organoselenium Catalytic System for Constructing 4‐Chromanone Derivatives via a Tandem Process under Visible Light Radiation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Zhou
- School of Chemical Engineering and Technology Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization Sun Yat-sen University, Tangjia Zhuhai City Guangdong Province 519082 P. R. China
| | - Manna Huang
- School of Chemical Engineering and Technology Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization Sun Yat-sen University, Tangjia Zhuhai City Guangdong Province 519082 P. R. China
| | - Yaowen Liang
- School of Chemical Engineering and Technology Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization Sun Yat-sen University, Tangjia Zhuhai City Guangdong Province 519082 P. R. China
| | - Yiqian Wan
- School of Chemical Engineering and Technology Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization Sun Yat-sen University, Tangjia Zhuhai City Guangdong Province 519082 P. R. China
| |
Collapse
|
20
|
Wang L, Jiang M, Shi MQ. Copper-catalyzed synthesis of CN-containing chroman-4-ones via intramolecular radical cascade acyl-cyanation reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Liu S, Zhang P, Zhang Y, Zhou X, Liang J, Nan J, Ma Y. Bifunctional acidic ionic liquid-catalyzed decarboxylative cascade synthesis of quinoxalines in water under ambient conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01068a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An acid-functionalized ionic liquid (IL)-catalyzed cascade decarboxylative cyclization of 2-arylanilines with α-oxocarboxylic acids was developed.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Pingjun Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xianying Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiahui Liang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
22
|
Sharma S, Sarma B, Baishya G. Direct synthesis of 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone containing chroman-4-ones via a silver catalyzed radical cascade cyclization reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03437e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel AgNO3/K2S2O8 catalyzed radical cascade cyclization reaction of 2-(allyloxy)arylaldehydes with 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone produces two new series of chroman-2-ones.
Collapse
Affiliation(s)
- Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
23
|
Li GH, Han QQ, Sun YY, Chen DM, Wang ZL, Xu XM, Yu XY. Visible-light induced cascade radical cyclization of sulfinic acids and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Wu Y, Xiao Y, Yang Y, Song R, Li J. Recent Advances in Silver‐Mediated Radical Difunctionalization of Alkenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000900] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yu‐Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yong‐Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
25
|
Liu Q, Lu W, Xie G, Wang X. Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation-cyclization cascade mediated by K 2S 2O 8. Beilstein J Org Chem 2020; 16:1974-1982. [PMID: 32831954 PMCID: PMC7431760 DOI: 10.3762/bjoc.16.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
A variety of chroman-4-ones bearing phosphine oxide motifs were conveniently synthesized from readily available diphenylphosphine oxides and alkenyl aldehydes via a metal-free tandem phosphinoylation/cyclization protocol. The reaction utilizes K2S2O8 as oxidant and proceeds in DMSO/H2O at environmentally benign conditions with a broad substrate scope and afforded the title compounds in moderate yields.
Collapse
Affiliation(s)
- Qiang Liu
- Dongguan University of Technology, Dongguan 523808, P. R. China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Weibang Lu
- Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Guanqun Xie
- Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Xiaoxia Wang
- Dongguan University of Technology, Dongguan 523808, P. R. China
| |
Collapse
|
26
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
27
|
Liu Y, Xia Y, Cui S, Ji Y, Wu L. Palladium‐Catalyzed Cascade Hydrosilylation and Amino‐Methylation of Isatin Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun‐Tao Xia
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Su‐Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
28
|
Reddy CR, Kolgave DH, Subbarao M, Aila M, Prajapti SK. Ag-Catalyzed Oxidative ipso-Cyclization via Decarboxylative Acylation/Alkylation: Access to 3-Acyl/Alkyl-spiro[4.5]trienones. Org Lett 2020; 22:5342-5346. [DOI: 10.1021/acs.orglett.0c01588] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H. Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mounika Aila
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Santosh Kumar Prajapti
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
29
|
Yang W, Li B, Zhang M, Wang S, Ji Y, Dong S, Feng J, Yuan S. Metal-free photo-induced radical C-P and C-S bond formation for the synthesis of 2-phosphoryl benzothiazoles. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Han QQ, Li GH, Sun YY, Chen DM, Wang ZL, Yu XY, Xu XM. Silver-catalyzed cascade radical cyclization of sodium sulfinates and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Das S, Parida SK, Mandal T, Sing L, De Sarkar S, Murarka S. Organophotoredox‐Catalyzed Cascade Radical Annulation of 2‐(Allyloxy)arylaldehydes with
N
‐(acyloxy)phthalimides: Towards Alkylated Chroman‐4‐one Derivatives. Chem Asian J 2020; 15:568-572. [PMID: 32017417 DOI: 10.1002/asia.201901735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Sanju Das
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sushanta Kumar Parida
- Department of ChemistryIndian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Tanumoy Mandal
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Laxmikanta Sing
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Suman De Sarkar
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sandip Murarka
- Department of ChemistryIndian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| |
Collapse
|
32
|
Xiong L, Hu H, Wei CW, Yu B. Radical Reactions for the Synthesis of 3-Substituted Chroman-4-ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901581] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Li Xiong
- Department of Bioengineering; Zhuhai Campus of Zunyi Medical University; 519041 Zhuhai Guangdong Province China
| | - Hao Hu
- College of Chemistry; Zhengzhou University; 450001 Zhengzhou China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering; University of South China; 421001 Hengyang China
| | - Bing Yu
- College of Chemistry; Zhengzhou University; 450001 Zhengzhou China
| |
Collapse
|
33
|
Nair AM, Shinde AH, Kumar S, Volla CMR. Metal-free spirocyclization of N-arylpropiolamides with glyoxylic acids: access to complex azaspiro-fused tricycles. Chem Commun (Camb) 2020; 56:12367-12370. [DOI: 10.1039/d0cc04800c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient K2S2O8-mediated oxidative cascade spirocyclization of N-arylpropiolamides with aryl glyoxylic acids was demonstrated for constructing azaspiro[4,5]-trienones and complex azaspiro-fused architectures.
Collapse
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Anand H. Shinde
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Shreemoyee Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | | |
Collapse
|
34
|
Liu MC, Liu W, Wu HY, Zhou YB, Ding Q, Peng Y. Transition-metal-free synthesis of CMe2CF3-containing chroman-4-ones via decarboxylative trifluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/c9qo01283d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(NH4)2S2O8-mediated decarboxylative trifluoroalkylation of alkenes with 3,3,3-trifluoro-2,2-dimethylpropanoic acid under metal-free conditions has been described.
Collapse
Affiliation(s)
- Miao-Chang Liu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
35
|
Synthesis of chroman-4-one and indanone derivatives via silver catalyzed radical ring opening/coupling/cyclization cascade. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
He X, Cai B, Yang Q, Wang L, Xuan J. Visible‐Light‐Promoted Cascade Radical Cyclization: Synthesis of 1,4‐Diketones Containing Chroman‐4‐One Skeletons. Chem Asian J 2019; 14:3269-3273. [DOI: 10.1002/asia.201901078] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/28/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Xiang‐Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsCollege of Chemistry & Chemical EngineeringAnhui University Hefei Anhui 230601 P. R. China
| | - Bao‐Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsCollege of Chemistry & Chemical EngineeringAnhui University Hefei Anhui 230601 P. R. China
| | - Qing‐Qing Yang
- China Three Gorges UniversityCollege of Materials and Chemical EngineeringKey laboratory of inorganic nonmetallic crystalline and energy conversion materials Yichang Hubei 443002 P. R. China
| | - Long Wang
- China Three Gorges UniversityCollege of Materials and Chemical EngineeringKey laboratory of inorganic nonmetallic crystalline and energy conversion materials Yichang Hubei 443002 P. R. China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsCollege of Chemistry & Chemical EngineeringAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University)Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
37
|
Li D, Yang WC. Copper-catalyzed regioselective alkylation of heteroarenes with functionalized alkyl halides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Zhou N, Wu M, Zhang M, Zhou X. Visible‐Light‐Induced Difluoroacetylation of O‐(Allyloxy)Aryl‐Aldehydes: Access to Difluoroacetylated Chroman‐4‐ones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials ScienceAnhui Normal University Wuhu, Anhui 241000 China
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials ScienceAnhui Normal University Wuhu, Anhui 241000 China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials ScienceAnhui Normal University Wuhu, Anhui 241000 China
| | - Xiaoqiang Zhou
- College of chemistry and materialWeinan Normal University Weinan 714099, Shaanxi province China
| |
Collapse
|
39
|
Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. α-Keto Acids: Acylating Agents in Organic Synthesis. Chem Rev 2019; 119:7113-7278. [DOI: 10.1021/acs.chemrev.8b00782] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Filipe Penteado
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eric F. Lopes
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
40
|
Sun K, Li SJ, Chen XL, Liu Y, Huang XQ, Wei DH, Qu LB, Zhao YF, Yu B. Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1-a]isoquinolin-6(5H)-ones. Chem Commun (Camb) 2019; 55:2861-2864. [PMID: 30761394 DOI: 10.1039/c8cc10243k] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient decarboxylative radical addition/cyclization strategy was developed, by which a wide range of benzimidazo[2,1-a]isoquinoline-6(5H)-ones were prepared in one-pot via reaction of functionalized 2-arylbenzoimidazoles and carboxylic acids in the presence of K2S2O8/AgNO3 under mild reaction conditions.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xiao YM, Liu Y, Mai WP, Mao P, Yuan JW, Yang LR. A Novel and Facile Synthesis of Chroman-4-one Derivatives via
Cascade Radical Cyclization Under Metal-free Condition. ChemistrySelect 2019. [DOI: 10.1002/slct.201900147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Mei Xiao
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| | - Yang Liu
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| | - Wen-Peng Mai
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
- School of Materials and Chemical Engineering; Henan University of Engineering; Zhengzhou 450006 China
| | - Pu Mao
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| |
Collapse
|
42
|
Yang W, Feng J, Wu L, Zhang Y. Aliphatic Aldehydes: Novel Radical Alkylating Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801355] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wen‐Chao Yang
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Jian‐Guo Feng
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yong‐Qiang Zhang
- College of Plant ProtectionSouthwest University Chongqing 400716 People's Republic of China
| |
Collapse
|
43
|
Zhou Y, Xiong Z, Qiu J, Kong L, Zhu G. Visible light photocatalytic acyldifluoroalkylation of unactivated alkenes for the direct synthesis of gem-difluorinated ketones. Org Chem Front 2019. [DOI: 10.1039/c9qo00136k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalyzed alkene acyldifluoroalkylation with difluoroacetic acids for the direct synthesis of gem-difluorinated cyclic ketones is developed.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Zhimin Xiong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|
44
|
Sheng J, Liu J, Chen L, Zhang L, Zheng L, Wei X. Silver-catalyzed cascade radical cyclization of 2-(allyloxy)arylaldehydes with cyclopropanols: access to chroman-4-one derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00292h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A convenient silver-catalyzed cascade radical cyclization of 2-(allyloxy)arylaldehydes with cyclopropanols was developed to synthesize carbonyl-containing alkyl-substituted chroman-4-one derivatives.
Collapse
Affiliation(s)
- Jie Sheng
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
| | - Liuqing Chen
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| | - Lingling Zhang
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| | - Xingchuan Wei
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| |
Collapse
|
45
|
Sun K, Chen XL, Zhang YL, Li K, Huang XQ, Peng YY, Qu LB, Yu B. Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2-a]quinolines. Chem Commun (Camb) 2019; 55:12615-12618. [DOI: 10.1039/c9cc06924k] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free cascade reaction was developed for the synthesis of indolo[1,2-a]quinoline derivatives from arylsulfonyl hydrazides and 1-(2-(arylethynyl)phenyl)indoles in the presence of TBAI/TBHP.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yin-Li Zhang
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kai Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Yu-Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Ling-Bo Qu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Yu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
46
|
Muhammad MH, Chen XL, Yu B, Qu LB, Zhao YF. Applications of H-phosphonates for C element bond formation. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0906] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The readily accessible and inexpensive dialkyl H-phosphonates are important building blocks for organic synthesis. This review specifically covers our recent work on the application of H-phosphonates as reactants for C–P bond formation, and as promoters for quinoline N-oxides to synthesize 2-functionalized quinolines.
Collapse
Affiliation(s)
- Mehwish Hussain Muhammad
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001 , China
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001 , China
| | - Xiao-Lan Chen
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001 , China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen 361005 , China
| | - Bing Yu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001 , China
| | - Ling-Bo Qu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001 , China
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001 , China
| | - Yu-Fen Zhao
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001 , China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen 361005 , China
| |
Collapse
|
47
|
Tang L, Yang Z, Chang X, Jiao J, Ma X, Rao W, Zhou Q, Zheng L. K 2S 2O 8-Mediated Selective Trifluoromethylacylation and Trifluoromethylarylation of Alkenes under Transition-Metal-Free Conditions: Synthetic Scope and Mechanistic Studies. Org Lett 2018; 20:6520-6525. [PMID: 30289263 DOI: 10.1021/acs.orglett.8b02846] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical and efficient method for selective intramolecular radical trifluoromethylacylation and -arylation of alkenes with inexpensive CF3SO2Na and K2S2O8 in aqueous media has been developed, respectively, affording the highly chemoselective synthesis of CF3-functionalized chroman-4-ones and chromanes in satisfactory yields. Control experiments and DFT calculations indicate that the CF3SO2Na/K2S2O8 system is capable of trifluoromethylating the substrate of alkenes without a transition metal catalyst and the oxidation of CF3SO2Na to ·CF3 by K2S2O8 is involved in the rate-determining step.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan , Xinyang , Henan 464000 , China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Jingchao Jiao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| |
Collapse
|
48
|
Hu H, Chen X, Sun K, Wang J, Liu Y, Liu H, Fan L, Yu B, Sun Y, Qu L, Zhao Y. Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones. Org Lett 2018; 20:6157-6160. [PMID: 30251870 DOI: 10.1021/acs.orglett.8b02627] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel and convenient silver-catalyzed radical cascade cyclization toward a large variety of 1,5-/1,3-dicarbonyl heterocycles containing a chroman-4-one, indanone, or 2,3-dihydroquinolin-4(1 H)-one moiety was developed, by reacting various 2-functionalized benzaldehydes, including 2-allyloxy benzaldehydes, 2-allyl benzaldehyde, and 2-N(Ts)CH2-CH═CH2 substituted benzaldehyde, with 1,3-dicarbonyl compounds in the presence of AgNO3/K2S2O8 in one pot under mild reaction conditions. The newly obtained 1,5-/1,3-dicarbonyl-containing heterocycles were further used directly to synthesize more structurally diverse polyheterocycles, mainly including chromenopyridines as well as isoxazole- or pyrazole-containing chroman-4-ones.
Collapse
Affiliation(s)
- Hao Hu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Xiaolan Chen
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China.,The Key Laboratory for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , China
| | - Kai Sun
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Junchao Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Yan Liu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hui Liu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Lulu Fan
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Bing Yu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Yuanqiang Sun
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Lingbo Qu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Yufen Zhao
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications. College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China.,The Key Laboratory for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
49
|
Yang WC, Wei K, Sun X, Zhu J, Wu L. Cascade C(sp3)–S Bond Cleavage and Imidoyl C–S Formation: Radical Cyclization of 2-Isocyanoaryl Thioethers toward 2-Substituted Benzothiazoles. Org Lett 2018; 20:3144-3147. [DOI: 10.1021/acs.orglett.8b01278] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen-Chao Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
50
|
Silver-Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2-Diketones and Aryl-Substituted Ethanes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|