1
|
Tripathy AR, Kumar A, Rahmathulla A R, Jha AK, Yatham VR. Visible-Light-Driven α-Aminoalkyl Radical-Mediated C(sp 3)-C(sp) Cross-Coupling of Iodoalkanes and Alkynyl Bromides. Org Lett 2022; 24:5186-5191. [PMID: 35833707 DOI: 10.1021/acs.orglett.2c02018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a simple protocol for metal-free cross-coupling between unactivated alkyl iodides and terminal alkynyl bromides promoted by visible light. The salient features of this transformation are the utilization of an organic photocatalyst and commercially available tri-n-butylamine as a reductant. This protocol couples a variety of unactivated iodoalkanes containing different functional groups and with a variety of terminal alkynyl bromides under mild reaction conditions to afford the substituted alkynes in good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Amit Kumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Rizwana Rahmathulla A
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Jiang B, Shi S. Pd‐Catalyzed Cross‐Coupling of Alkylzirconocenes and Aryl Chlorides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Binyang Jiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
3
|
Jiang C, Qi X, Yang C. Alkylzirconocenes in Organic Synthesis: An Overview. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractOrganozirconium chemistry has found extensive applications in organic synthesis since its discovery in the last century. Alkylzirconocenes, which are easily generated by the hydrozirconation of alkenes with the Schwartz reagent, are widely utilized for carbon–carbon and carbon–heteroatom bond formation. This short review summarizes the progress to date on the applications alkylzirconocenes in organic synthesis.1 Introduction2 General Methods for Generating Alkylzirconocenes3 Transformations of Alkylzirconocenes by Heteroatoms4 Insertion of Unsaturated Groups into Alkylzirconocenes5 Transmetalations6 Cross-Coupling Reactions of Alkylzirconocenes7 Photochemistry of Alkylzirconocenes8 Bimetallic Reagents of Zirconium9 Asymmetric Transformations10 Applications of Alkylzirconocenes Generated from the Negishi Reagent11 Conclusions and Outlook
Collapse
Affiliation(s)
- Chao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology
| | - Xiangbing Qi
- National Institute of Biological Sciences
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
| | - Chao Yang
- School of Chemical Engineering, Nanjing University of Science and Technology
- National Institute of Biological Sciences
| |
Collapse
|
4
|
Némethová I, Šebesta R. Are Organozirconium Reagents Applicable in Current Organic Synthesis? SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe search for mild, user-friendly, easily accessible, and robust organometallic reagents is an important feature of organometallic chemistry. Ideally, new methodologies employing organometallics should be developed with respect to practical applications in syntheses of target compounds. In this short review, we investigate if organozirconium reagents can fulfill these criteria. Organozirconium compounds are typically generated via in situ hydrozirconation of alkenes or alkynes with the Schwartz reagent. Alkyl and alkenylzirconium reagents have proven to be convenient in conjugate additions, allylic substitutions, cross-coupling reactions, and additions to carbonyls or imines. Furthermore, the Schwartz reagent itself is a useful reducing agent for polar functional groups.1 Introduction2 Synthesis and Generation of the Schwartz Reagent3 Structure and Properties of Cp2Zr(H)Cl4 Reactivity of Organozirconium Reagents4.1 Asymmetric Conjugate Addition4.2 Asymmetric Allylic Alkylations4.3 Desymmetrization Reactions4.4 Cross-Coupling Reactions4.5 1,2-Additions5 Conclusions
Collapse
Affiliation(s)
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry
| |
Collapse
|
5
|
Yang C, Gao Y, Bai S, Jiang C, Qi X. Chemoselective Cross-Coupling of gem-Borazirconocene Alkanes with Aryl Halides. J Am Chem Soc 2020; 142:11506-11513. [PMID: 32496064 DOI: 10.1021/jacs.0c03821] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct and chemoselective conversion of the carbon-metal bond of gem-dimetallic reagents enables rapid and sequential formation of multiple carbon-carbon and carbon-heteroatom bonds, thus representing a powerful method for efficiently increasing structural complexity. Herein, we report a visible-light-induced, nickel-catalyzed, chemoselective cross-coupling reaction between gem-borazirconocene alkanes and diverse aryl halides, affording a wide range of alkyl Bpin derivatives in high yields with excellent regioselectivity. This practical method features attractively simple reaction conditions and a broad substrate scope. Additionally, we systematically investigated a Bpin-directed chain walking process underlying the regioselectivity of alkylzirconocenes, thus uncovering the mechanism of the remote functionalization of internal olefins achieved with our method. Finally, DFT calculations indicate that the high regioselectivity of this reaction originates from the directing effect of the Bpin group.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yadong Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Alkylation of Terminal Alkynes under Zinc Lewis Acid Catalysis and Its Mechanistic Studies. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Song ZY, Zhang CL, Ye S. Visible light promoted coupling of alkynyl bromides and Hantzsch esters for the synthesis of internal alkynes. Org Biomol Chem 2019; 17:181-185. [PMID: 30534692 DOI: 10.1039/c8ob02912a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free visible light promoted C(sp3)-C(sp) coupling reaction of alkynyl bromides and Hantzsch esters was developed, giving internal alkynes with primary, secondary, tertiary alkyl or other functional groups in good to high yields.
Collapse
Affiliation(s)
- Zhi-Yong Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
9
|
Pinheiro DLJ, de Castro PP, Amarante GW. Recent Developments and Synthetic Applications of Nucleophilic Zirconocene Complexes from Schwartz's Reagent. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danielle L. J. Pinheiro
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| | - Pedro P. de Castro
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| | - Giovanni W. Amarante
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| |
Collapse
|