1
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
2
|
Wu Q, Zhang X, Yang Q, Song Z, Ding Q, Peng Y. Synthesis of Selenium-Containing N-Quinazolinyl Acroleins via a 3,3-Radical Rearrangement Cascade Reaction. Org Lett 2024. [PMID: 38189242 DOI: 10.1021/acs.orglett.3c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An effective approach for the construction of 2-aryl-3-(3-oxo-1-aryl-2-(organoselanyl)prop-1-en-1-yl)quinazolin-4(3H)-ones was developed. Excellent to almost quantitative yields were obtained by the cascade reaction of propargyl quinazoline-4-yl ethers, diselenides, and 70% tert-butyl hydrogen peroxide aqueous solution under metal-free and mild conditions. The synthesized hybrids, with conglomeration of quinazolinone, organoselenium, aldehyde, and fully substituted alkene moieties in one molecule, will have the potential for applications in development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Xinqin Zhang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
3
|
Han J, Yang Y, Gong Y, Tang X, Tian Y, Li B. Divergent access to 5,6,7-perifused cycles. Nat Commun 2023; 14:5148. [PMID: 37620317 PMCID: PMC10449863 DOI: 10.1038/s41467-023-40801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nitrogen-containing heterocycles are the key components in many pharmaceuticals and functional materials. In this study, we report a transition metal-catalyzed high-order reaction sequence for synthesizing a structurally unique N-center 5,6,7-perifused cycle (NCPC). The key characteristics include the formation of a seven-membered ring by the 8π electrocyclization of various alkenes and aromatic heterocycles as π-components, in which metal carbene species are generated that further induce the cleavage of the α-C-H or -C-C bond. Specifically, the latter can react with various nucleophilic reagents containing -O, -S, -N, and -C. The stereo-controlled late-stage modification of some complicated pharmaceuticals indicates the versatility of this protocol.
Collapse
Affiliation(s)
- Jingpeng Han
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yongjian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yingjian Gong
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Xuan Tang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China.
| |
Collapse
|
4
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
5
|
Zhu C, Nurko M, Day CS, Lukesh JC. Arylselenyl Radical-Mediated Cyclization of N-(2-Alkynyl)anilines: Access to 3-Selenylquinolines. J Org Chem 2022; 87:8390-8395. [PMID: 35731899 DOI: 10.1021/acs.joc.2c00282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and novel approach to accessing 3-selenylquinolines from diaryl diselenides and acyclic, selenium-free substrates is described. Preliminary mechanistic studies indicate that the combination of CuCl2 and air affords an appropriate environment for producing arylselenyl radicals that initiate the cascade cyclization of N-(2-alkynyl)anilines, forming key Se-C and C-C bonds in a single step. Using this chemistry, a wide variety of 3-selenylquinolines were produced in moderate to excellent yield under mild conditions, highlighting the versatility and usefulness of this new method.
Collapse
Affiliation(s)
- Changlei Zhu
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Max Nurko
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
6
|
Xiao X, Han P, Zhou H, Liu J. Palladium-Catalyzed Difunctionalization of Alkenes by Relay Coupling with Propargylic Pyridines: Synthesis of Indolizine and Indolizinone-Containing Bisheterocycles. J Org Chem 2021; 86:18179-18191. [PMID: 34860532 DOI: 10.1021/acs.joc.1c02438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed arylation/heteroarylation of aryl halide-tethered alkenes with propargylic pyridines has been established, which provides direct and efficient access to various oxindole, azaoxindole, dihydrobenzopyran, indole, and benzofuran-linked indolizines in good yields with a broad substrate scope and high functional group tolerance. This process enables the formation of one C-N and two C-C bonds in a single operation through an intramolecular carbopalladation and cycloisomerization sequence. Furthermore, an indolizinone-linked bisheterocyclic framework containing indole and benzofuran could be synthesized conveniently from tertiary propargylic alcohols involving methyl or phenyl migration.
Collapse
Affiliation(s)
- Xiao Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Puren Han
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Huiwen Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jianchao Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
7
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
8
|
Neto JSS, Zeni G. Recent Developments in the Cyclization of Alkynes and Nitrogen Compounds for the Synthesis of Indole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
9
|
Win KMN, Sonawane AD, Koketsu M. Synthesis of selenated tetracyclic indoloazulenes via iodine and diorganyl diselenides. Org Biomol Chem 2021; 19:3199-3206. [PMID: 33885574 DOI: 10.1039/d1ob00268f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we report an efficient protocol for the synthesis of selenated tetracyclic indoloazulenes. The reaction of diorganyl diselenides with molecular iodine in dichloromethane leads to the in situ formation of organo selenenyl iodide. The synthesis of selenylated tetracyclic indoloazulenes through intramolecular cascade cyclization has been achieved via organo selenenyl iodide and bisindole at room temperature under metal-free conditions in good yields. All compounds were fully characterized by the FT-IR, HRMS, and 1H, 13C and 77Se NMR spectral data.
Collapse
Affiliation(s)
- Khin Myat Noe Win
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | |
Collapse
|
10
|
Schumacher RF, Godoi B, Jurinic CK, Belladona AL. Diorganyl Dichalcogenides and Copper/Iron Salts: Versatile Cyclization System To Achieve Carbo- and Heterocycles from Alkynes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1463-4098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractOrganochalcogen-containing cyclic molecules have shown several promising pharmacological properties. Consequently, different strategies have been developed for their synthesis in the past few years. Particularly due to the low cost and environmental aspects, copper- and iron-promoted cyclization reactions of alkynyl substrates have been broadly and efficiently applied for this purpose. This short review presents an overview of the most recent advances in the synthesis of organochalcogen-containing carbo- and heterocycles by reacting diorganyl disulfides, diselenides, and ditellurides with alkyne derivatives in the presence of copper and iron salts to promote cyclization reactions.1 Introduction2 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Copper Salts3 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Iron Salts4 Conclusions
Collapse
Affiliation(s)
| | - Benhur Godoi
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis – PPGATS, Federal University of Fronteira Sul
| | - Carla K. Jurinic
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis – PPGATS, Federal University of Fronteira Sul
| | | |
Collapse
|
11
|
Abstract
The synthesis of organoselenium compounds continues to be a very active research area, due
to their distinct chemical, physical and biological properties. Selenium-based methods have developed
rapidly over the past few years and organoselenium chemistry has become a very powerful tool in the
hands of organic chemists. This review describes the synthesis of organocatalysed bioactive selenium
scaffolds especially including transition metal-catalysed diaryl selenide synthesis, Cu-catalysed selenium
scaffolds, Pd-catalysed selenium scaffolds, asymmetric catalysis, Nickel catalysed selenium scaffolds
and Rh-catalysed selenium scaffolds.
Collapse
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| |
Collapse
|
12
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Synthesis of Seleno‐Heterocycles
via
Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000490] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Rohini A. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
13
|
Sonawane AD, Shimozuma A, Udagawa T, Ninomiya M, Koketsu M. Synthesis and photophysical properties of selenopheno[2,3-b]quinoxaline and selenopheno[2,3-b]pyrazine heteroacenes. Org Biomol Chem 2020; 18:4063-4070. [PMID: 32418998 DOI: 10.1039/d0ob00718h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we report the novel synthesis of three different heterocycles, namely 2-arylselenopheno[2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-2-arylselenopheno[2,3-b]quinoxaline and 6-phenyl-7-(arylselanyl)selenopheno[2,3-b]pyrazine derivatives, from the corresponding 2,3-dichloroquinoxaline and 2,3-dichloropyrazine derivatives. Furthermore, photophysical properties were investigated to study the effect of heteroatoms on UV-absorbance and fluorescence properties.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
14
|
Li Y, Xiong W, Zhang Z, Xu T. Synthesis of Indolizine Derivatives Triggered by the Oxidative Addition of Aroyl Chloride to Pd(0) Complex. J Org Chem 2020; 85:6392-6399. [PMID: 32348132 DOI: 10.1021/acs.joc.0c00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient synthesis of indolizine derivatives from propargylic pyridines and aroyl chlorides was developed. The 5-endo-dig cyclization was initiated by the in situ formed acylpalladium species from the facile oxidative addition of aroyl chloride to Pd(0) complex. This transformation successfully occurred in the presence of an N-nucleophilic moiety and acid chlorides, a good electrophilic partner, affording highly functionalized indolizines in good-to-excellent yields.
Collapse
Affiliation(s)
- Yahui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wei Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhifeng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
15
|
Sonawane AD, Sonawane RA, Win KMN, Ninomiya M, Koketsu M. In situ air oxidation and photophysical studies of isoquinoline-fused N-heteroacenes. Org Biomol Chem 2020; 18:2129-2138. [PMID: 32134103 DOI: 10.1039/d0ob00375a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, metal free and environment friendly synthesis of isoquinoline-fused benzimidazole has been developed via in situ air oxidation. Also, syntheses of isoquinoline-fused quinazolinone heteroacenes were successfully achieved. The synthesized isoquinoline-fused benzimidazole and isoquinoline-fused quinazolinone derivatives showed λmax, Fmax and Φf values in the ranges 356-394 nm, 403-444 nm and 0.063-0.471, respectively, in CHCl3.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
16
|
Sun K, Wang X, Li C, Wang H, Li L. Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. Org Chem Front 2020. [DOI: 10.1039/d0qo00849d] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent progress in tandem selenocyclization and tellurocyclization with alkenes and alkynes, with an emphasis on the scopes, limitations and mechanisms of these different reactions.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
- School School of Chemistry and Materials Science
| | - Xin Wang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Chao Li
- School School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- P. R. China
| | - He Wang
- School School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- P. R. China
| | - Lei Li
- School School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- P. R. China
| |
Collapse
|
17
|
Leonel G, Back DF, Zeni G. Synthesis of 3‐Substituted Chalcogenophene‐Fused Indoles from 2‐Alkynylindoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guilherme Leonel
- Laboratório de Síntese, Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos Departamento de Química, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
18
|
Chen Z, Liang P, Xu F, Deng Z, Long L, Luo G, Ye M. Metal-Free Aminothiation of Alkynes: Three-Component Tandem Annulation toward Indolizine Thiones from 2-Alkylpyridines, Ynals, and Elemental Sulfur. J Org Chem 2019; 84:12639-12647. [PMID: 31545050 DOI: 10.1021/acs.joc.9b01802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metal-free three-component annulation reaction for the synthesis of indolizine thiones via tandem C-C/C-N/C-S bond formation was developed. Various 2-alkylpyridines with aromatic ynals and elemental sulfur proceeded smoothly under catalyst-free conditions, and the desired products were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Pei Liang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Zhen Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| |
Collapse
|
19
|
Fang JD, Yan XB, Lin WJ, Zhao YC, Liu XY. Diphenyl-Diselenide-Mediated Domino Claisen-Type Rearrangement/Cyclization of Propargylic Aryl Ethers: Synthesis of Naphthofuran-2-carboxaldehyde Derivatives. Org Lett 2019; 21:7635-7638. [PMID: 31507178 DOI: 10.1021/acs.orglett.9b02942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A diphenyl-diselenide-mediated Claisen-type rearrangement/cyclization of propargylic aryl ethers under metal-free conditions is developed, affording various naphthofuran-2-carboxaldehydes in moderate to excellent yield. The broad substrate scope and excellent functional group compatibility suggest that it can be a straightforward and powerful method to access naphthofuran-2-carboxaldehydes in a highly regioselective manner. Moreover, this reaction can be scaled up to the gram scale.
Collapse
Affiliation(s)
- Jun-Dan Fang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Xiao-Biao Yan
- School of Pharmacy , Anhui Medical University , 81 Meishan Road , Hefei 230032 , China
| | - Wu-Jie Lin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Yi-Chuan Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| |
Collapse
|
20
|
Sonawane AD, Kubota Y, Koketsu M. Iron-Promoted Intramolecular Cascade Cyclization for the Synthesis of Selenophene-Fused, Quinoline-Based Heteroacenes. J Org Chem 2019; 84:8602-8614. [DOI: 10.1021/acs.joc.9b01061] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Yang J, Zhu Y, Tse AKW, Zhou X, Chen Y, Tse YC, Wong KMC, Ho CY. Synthesis and study of Au(iii)-indolizine derivatives: turn-on luminescence by photo-induced controlled release. Chem Commun (Camb) 2019; 55:4471-4474. [PMID: 30839955 DOI: 10.1039/c8cc10177a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The photo- and structural properties of a series of Au(iii) indolizine complexes were determined. Controlled release of halogenated indolizine derivatives from the corresponding Au(iii) complexes was achieved by photoinduced C-X bond formation, which provided turn-on luminescence with an increase in emission intensity of up to 67 times.
Collapse
Affiliation(s)
- Jie Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fang J, Yan X, Zhou L, Wang Y, Liu X. Synthesis of 3‐Organoselenyl‐2
H
‐Coumarins from Propargylic Aryl Ethers via Oxidative Radical Cyclization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun‐Dan Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Biao Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Li Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yu‐Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
23
|
Abstract
Abstract
This chapter highlights the utility of electrophilic achiral and chiral organoselenium reagents in organic synthesis. A range of reactions from alkene functionalizations, the functionalization of aliphatic and aromatic C–H bonds using stoichiometric and catalytic approaches as well as rearrangement reactions are described. In addition, the utility of organotellurium reagents in organic synthesis is covered in this chapter.
Collapse
|
24
|
|
25
|
Casola KK, Gomes MR, Back DF, Zeni G. Electrophilic Cyclization Involving Carbon-Selenium/Carbon-Halide Bond Formation: Synthesis of 3-Substituted Selenophenes. J Org Chem 2018; 83:6706-6718. [PMID: 29847130 DOI: 10.1021/acs.joc.8b01136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The butylselanyl propargyl alcohols reacted with iodine to afford 3-iodoselenophenes. The change of nucleophile position from propargyl to homopropargyl was crucial for the aromatization and formation of selenophene rings. The experiments revealed that bromine and N-bromosuccinimide were not able to cyclize the butylselanyl propargyl alcohols; however, when the bromine source was copper(II) bromide the corresponding 3-bromoselenophenes were obtained in good yields. In addition, the reaction of butylselanyl propargyl alcohols with diorganyl diselenides catalyzed by copper(I) iodide gave the 3-(organoselanyl)selenophenes. The reaction took place with aromatic rings substituted by either electron-donating or -withdrawing groups in the alkynes and propargyl positions. The steric effects of substituents were dominant in determining the yields, whereas electronic effects had only a minor influence. Furthermore, by monitoring the reaction by 1H NMR, we were able to identify the key intermediate, which supported the elaboration of a proposed reaction mechanism. The 3-iodoselenophenes prepared allowed the synthesis of multifunctional selenophenes via application in metal-catalyzed coupling reactions, such as Sonogashira, Ullmann and Suzuki type reactions.
Collapse
|
26
|
Liu R, Wang Q, Wei Y, Shi M. Synthesis of indolizine derivatives containing eight-membered rings via a gold-catalyzed two-fold hydroarylation of diynes. Chem Commun (Camb) 2018; 54:1225-1228. [DOI: 10.1039/c7cc09250d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy for a gold(i)-catalyzed synthesis of indolizine derivatives containing eight-membered rings has been developed, which may have potential usefulness as blue or green OLEDs.
Collapse
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Qiang Wang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|