1
|
Sumit, Sachin, Chandra D, Sharma U. Ru(II)-Catalyzed Sustainable C-H Methylation of Indolines with Organoboranes in Ethanol. J Org Chem 2024; 89:14880-14886. [PMID: 39240126 DOI: 10.1021/acs.joc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A sustainable protocol for Ru(II)-catalyzed regioselective C(sp2)-H methylation of indolines in the presence of ethanol has been explored. A wide array of substituted indolines were successfully methylated via the developed protocol with good to excellent yields. Deuterium labeling experiments suggested the reversible nature of the C-H activation step. Kinetic isotope effect studies revealed that C-H activation might be the rate-determining step. Gram scale reaction and post-transformation reactions of the methylated product demonstrated the potential of the developed protocol.
Collapse
Affiliation(s)
- Sumit
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Lu F, Geng Y, Wang H, Liu YN, Zhang E, Yang L, Tang J. Late-Stage Modification of Peptides with Maleimides through Palladium-Catalyzed β-C(sp 3)-H Alkylation. Org Lett 2024; 26:8786-8791. [PMID: 39364794 DOI: 10.1021/acs.orglett.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Transition-metal-catalyzed C-H activation has proven to be a powerful tool for the late-stage modification of peptides. We herein report a method for site-selective alkylation of peptides with maleimides through Pd-catalyzed β-C(sp3)-H activation. In this protocol, the methionine residues within peptides serve as the directing groups, which circumvented the preinstallation and subsequent removal of the directing groups. This chemistry exhibited broad substrate scope and can be utilized for peptide ligation.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Huihui Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ya-Ning Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liyun Yang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
| |
Collapse
|
3
|
Ren Z, Feng T, Gao T, Han B, Guo R, Ma H, Wang JJ, Zhang Y. Cu(I)-Catalyzed Highly Regioselective C-H Amidation of Quinoline N-Oxides with Dioxazolones. Org Lett 2024; 26:8532-8536. [PMID: 39347582 DOI: 10.1021/acs.orglett.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A Cu(I)-catalyzed highly regioselective synthesis of 2-acetamidequinoline N-oxides using dioxazolones with quinoline N-oxides has been reported. The reaction possesses mild reaction conditions and excellent functional group compatibility. Furthermore, the addition of hydrochloric acid promotes the decomposition of copper complexes, which is beneficial for postprocessing.
Collapse
Affiliation(s)
- Zhiqiang Ren
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Tianhui Feng
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Tianli Gao
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Bo Han
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ruili Guo
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Haojie Ma
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ji-Jiang Wang
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Yuqi Zhang
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| |
Collapse
|
4
|
Tian H, Hou T, Yang X, Xu H, Dong Y. Cp*Ir III-Catalyzed C 8-Selective C-H Activation Enables Room-Temperature Direct Arylation of Quinoline N-Oxides with Arylsilanes. J Org Chem 2023; 88:16365-16375. [PMID: 37948572 DOI: 10.1021/acs.joc.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The Cp*Ir-catalyzed C8-selective arylation of quinoline N-oxides with arylsilanes is developed. This C-H activation transformation can be carried out under mild reaction conditions in good yields with a broad substrate scope and excellent functional-group tolerance. This protocol can be easily used to synthesize diverse quinoline derivatives and enable the late-stage modification of quinoline drugs. A plausible reaction mechanism is elucidated based on a series of preliminary mechanistic studies.
Collapse
Affiliation(s)
- Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
5
|
Costa PJ, Martins FF, Pi C, Cui X, Calhorda MJ. C-H functionalization of quinoline N-oxides catalyzed by Pd(II) complexes: a computational study. Phys Chem Chem Phys 2023; 25:22755-22767. [PMID: 37605868 DOI: 10.1039/d3cp02445h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Pd(II) catalysts, particularly the acetate salt in acetic acid, tended to favor regioselective C-H activation of quinoline N-oxides (QOs) at the C2 position. However, Pd(II)Cl2 was shown to catalyze their C-H activation at C8 and, in the presence of water, C8-H activation was accompanied by the formation of 2-quinolinones. The aim of the DFT study described in this work was to shed light on the complete mechanism of these competing catalytic reactions, when PdCl2 reacts with QO and benzaldehyde in dichloroethane. C-H activation of QO was the first step of the reaction and involved either a metallacycle, with a CQO-Pd(II) σ-bond and a C(8)-H-Pd(II) agostic bond, or an η3-QO complex, with three carbon atoms of the heteroring of QO binding PdCl2. The first situation led to the unusual C8 activation and the second to C2 activation. The σ-metallacycle undergoes C8-H activation and the energy of the TOF determining the transition state to form the product is ∼17 kcal mol-1, while for the reaction through the π-metallacycle (C2-H activation) the corresponding energy is higher (∼29 kcal mol-1) and thus is not competitive under the same conditions. The reaction proceeding through the σ-complex, activating the C8 position, is preferred, in agreement with experimental results. Both reactions involve oxidation of Pd(II) to Pd(IV) and the catalyst is regenerated. When small amounts of water are added to the reaction mixture, C8-H activation (acylation) results from the same σ-metallacycle with the same barrier, but the simultaneous formation of 2-quinolinones is more complicated. It starts with OH- attack at the C2 position, and is followed by the migration of two hydrogen atoms, and the final reductive elimination step ends with Pd(0). The higher barriers for the migration and reoxidation of Pd(0) are associated with the more demanding reaction conditions. The different reactivity of Pd(II)(OAc)2 under analogous conditions is clarified, as it is only capable of forming the above mentioned π-complex and thus of activating the C2 position of QO. This catalyst can preferentially activate the C8-H bond under rather different conditions, including in particular acetic acid medium, as shown by other authors.
Collapse
Affiliation(s)
- Paulo J Costa
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Frederico F Martins
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Chao Pi
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiuling Cui
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Maria José Calhorda
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
6
|
Mandal S, Karjee P, Saha S, Punniyamurthy T. Directed C8-H allylation of quinoline N-oxides with vinylcyclopropanes via sequential C-H/C-C activation. Chem Commun (Camb) 2023; 59:2823-2826. [PMID: 36799135 DOI: 10.1039/d2cc06646g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Rh(III)-catalyzed C8-allylation of quinoline N-oxides has been accomplished using vinylcyclopropanes as an allyl source with excellent diastereoselectivity at room temperature. The C-H/C-C activation, substrate scope and natural product mutation are the important practical features.
Collapse
Affiliation(s)
- Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
7
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Yang QL, Liu Y, Liang L, Li ZH, Qu GR, Guo HM. Facilitating Rh-Catalyzed C-H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. J Org Chem 2022; 87:6161-6178. [PMID: 35438486 DOI: 10.1021/acs.joc.2c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical approach to promote the ortho-C-H alkylation of (hetero)arenes via rhodium catalysis under mild conditions is described. This approach features mild conditions with high levels of regio- and monoselectivity that tolerate a variety of aromatic and heteroaromatic groups and offers a widely applicable method for late-stage diversification of complex molecular architectures including tryptophan, estrone, diazepam, nucleosides, and nucleotides. Alkyl boronic acids and esters and alkyl trifluoroborates are demonstrated as suitable coupling partners. The isolation of key rhodium intermediates and mechanistic studies provided strong support for a rhodium(III/IV or V) regime.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhi-Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Prabagar B, Yang Y, Shi Z. Site-selective C-H functionalization to access the arene backbone of indoles and quinolines. Chem Soc Rev 2021; 50:11249-11269. [PMID: 34486584 DOI: 10.1039/d0cs00334d] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The site-selective C-H bond functionalization of heteroarenes can eventually provide chemists with great techniques for editing and building complex molecular scaffolds. During the past decade, benzo-fused N-heterocycles such as indoles and quinolines have been among the most widely investigated organic templates. Early developments have led to site-selective C-H bond functionalization on the pyrrole and pyridine cores of indoles and quinolines; however, C-H functionalization on the benzenoid ring has remained a great challenge in catalysis. In this review, we elaborate on recent developments in the highly challenging functionalization of C-H bonds on the less-reactive benzenoid core of indoles and quinolines. These findings are mainly described as selective directing group assisted strategies, remote C-H functionalization techniques and their reaction mechanisms. The underlying principle in each strategy is elucidated, which aims to facilitate the design of a more advanced structure of heterocycles based on bioactive molecules, synthetic drugs, and material aspects. Moreover, the challenges and perspectives for catalytic C-H functionalization to access the arene backbone of indoles and quinolines are also proposed in the conclusion section.
Collapse
Affiliation(s)
- B Prabagar
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Yang Z, Yu JT, Pan C. Recent advances in rhodium-catalyzed C(sp 2)-H (hetero)arylation. Org Biomol Chem 2021; 19:8442-8465. [PMID: 34553744 DOI: 10.1039/d1ob01190a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arylation is a common behaviour in organic synthesis for the construction of complex structures, especially the biaryls. Among those reported arylation procedures, transition-metal-catalyzed direct C(sp2)-H arylation has been rapidly developed in recent decades and has become a reliable alternative to traditional cross-coupling procedures using organometallic reagents. Great achievements in rhodium-catalyzed C(sp2)-H arylation have been witnessed during the last decade. Aryl halides, simple arenes, aryl boronic acids, arylsilanes, aryl aldehyde, aryl carboxylic acid, diazides, etc. were successfully utilized as arylating reagents under rhodium-catalyzed conditions. In this review, recent achievements in rhodium-catalyzed arylations through C(sp2)-H bond activation were summarized together with the mechanism discussions.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
11
|
Moseley DF, Kalepu J, Willis MC. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation. Chem Sci 2021; 12:13068-13073. [PMID: 34745537 PMCID: PMC8513814 DOI: 10.1039/d1sc03915f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry. We show that by using azine N-oxide substituted aldehydes, good reactivity can be achieved, and that they are highly effective substrates for the intermolecular hydroacylation of alkynes. Employing a Rh(i)-catalyst, we achieve a mild and scalable aldehyde C-H activation, that permits the coupling with unactivated terminal alkynes, in good yields and with high regioselectivities (up to >20 : 1 l:b). Both substrates can tolerate a broad variety of functional groups. The reaction can also be applied to diazine aldehydes that contain a free N-lone pair. We demonstrate conversion of the hydroacylation products to the corresponding azine, through a one-pot hydroacylation/deoxygenation sequence. A one-pot hydroacylation/cyclisation, using N-Boc propargylamine, additionally leads to the synthesis of a bidentate pyrrolyl ligand.
Collapse
Affiliation(s)
- Daniel F Moseley
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jagadeesh Kalepu
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Michael C Willis
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
12
|
|
13
|
Malykhin RS, Sukhorukov AY. Nucleophilic Halogenation of Heterocyclic
N
‐Oxides: Recent Progress and a Practical Guide. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman S. Malykhin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect, 47 Moscow 119991 Russia
- M. V. Lomonosov Moscow State University Department of Chemistry Leninskie gory, 1, str. 3 Moscow 119991 Russian Federation
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect, 47 Moscow 119991 Russia
- Plekhanov Russian University of Economics Stremyanny per. 36 Moscow 117997 Russia
| |
Collapse
|
14
|
Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Org Lett 2021; 23:4406-4410. [PMID: 34018745 DOI: 10.1021/acs.orglett.1c01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel Rh(III)-catalyzed C-H activation/annulation cascade of indole-enaminones with diazo compounds was reported to construct diversely functionalized carbazole frameworks. The most notable characteristic is that this transformation could smoothly furnish a novel [5 + 1] cyclization product with good to excellent yields (up to 95%), accompanied by the thorough removal of acetyl and N,N-dimethyl groups of two substrates from the target products, rather than the normally expected [4 + 2] cyclization products.
Collapse
Affiliation(s)
- Zhidong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoran Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J Org Chem 2021; 86:7579-7587. [PMID: 33949193 DOI: 10.1021/acs.joc.1c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The site-selective modification of quinolines and their analogs has emerged as a pivotal topic in medicinal chemistry and drug discovery. Herein, we describe the rhodium(III)-catalyzed C8-alkylation of quinoline N-oxides with maleimides as alkylating agents, resulting in the formation of bioactive succinimide-containing quinoline derivatives. The reaction proceeds under mild conditions with complete functional group tolerance.
Collapse
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dayoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jin Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Li Y, Fang F, Zhou J, Li J, Wang R, Liu H, Zhou Y. Rhodium‐Catalyzed C−H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline
N
‐Oxides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Li
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Feifei Fang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jiyuan Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| |
Collapse
|
17
|
Thakur A, Dhiman AK, Sumit, Kumar R, Sharma U. Rh(III)-Catalyzed Regioselective C8-Alkylation of Quinoline N-Oxides with Maleimides and Acrylates. J Org Chem 2021; 86:6612-6621. [PMID: 33881315 DOI: 10.1021/acs.joc.1c00393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we disclose the Rh(III)-catalyzed selective C8-alkylation of quinoline N-oxides with maleimides and acrylates. The main features of the reaction include complete C8-selectivity and broad substrate scope with good to excellent yields. The reaction also proceeded well with unprotected maleimide. The applicability of the developed methodology is demonstrated with gram-scale synthesis and post-modification of the alkylated product. Preliminary mechanistic study revealed that the reaction proceeds through a five-membered rhodacycle and involves proto-demetalation step.
Collapse
Affiliation(s)
- Ankita Thakur
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Ronzon Q, Zhang W, Casaretto N, Mouray E, Florent I, Nay B. Programmed Multiple C-H Bond Functionalization of the Privileged 4-hydroxyquinoline Template. Chemistry 2021; 27:7764-7772. [PMID: 33848033 DOI: 10.1002/chem.202100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/12/2022]
Abstract
The introduction of substituents on bare heterocyclic scaffolds can selectively be achieved by directed C-H functionalization. However, such methods have only occasionally been used, in an iterative manner, to decorate various positions of a medicinal scaffold to build chemical libraries. We herein report the multiple, site selective, metal-catalyzed C-H functionalization of a "programmed" 4-hydroxyquinoline. This medicinally privileged template indeed possesses multiple reactive sites for diversity-oriented functionalization, of which four were targeted. The C-2 and C-8 decorations were directed by an N-oxide, before taking benefit of an O-carbamoyl protection at C-4 to perform a Fries rearrangement and install a carboxamide at C-3. This also released the carbonyl group of 4-quinolones, the ultimate directing group to functionalize position 5. Our study highlights the power of multiple C-H functionalization to generate diversity in a biologically relevant library, after showing its strong antimalarial potential.
Collapse
Affiliation(s)
- Quentin Ronzon
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Wei Zhang
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245) Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245) Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| |
Collapse
|
19
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
20
|
Zhang G, Yang K, Wang S, Feng Q, Song Q. N 2H 4-H 2O Enabled Umpolung Cyclization of o-Nitro Chalcones for the Construction of Quinoline N-Oxides. Org Lett 2021; 23:595-600. [PMID: 33378210 DOI: 10.1021/acs.orglett.0c04162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Umpolung is a unique strategy which converts the property of an atom into the opposite one. An efficient and general method for the construction of quinoline N-oxides via umpolung of carbonyl groups was developed from ortho-nitro chalcones and hydrazine in basic conditions. The strategy is transition-metal free and has good functional group tolerance, environmental friendliness, as well as mild reaction conditions with nitrogen gas as the byproduct.
Collapse
Affiliation(s)
- Guan Zhang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Kai Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shihui Wang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Qiang Feng
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
21
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
22
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent‐Free Catalytic C−H Methylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Matic Hribersek
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Swarna K. Baddigam
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Andreas Orthaber
- Department of Chemistry—Ångström Laboratories Uppsala University Box 523 75120 Uppsala Sweden
| | - Paul J. Gates
- School of Chemistry University of Bristol Cantock's Close, Clifton Bristol BS8 1TS UK
| | - Lukasz T. Pilarski
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
23
|
Ai C, Liao X, Zhou Y, Yan Z, Lin S. SO2F2-mediated deoxygenative C2-sulfonylation of quinoline N-oxides with sodium sulfinates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. Angew Chem Int Ed Engl 2020; 59:17042-17048. [PMID: 32558084 DOI: 10.1002/anie.202003216] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Indexed: 12/19/2022]
Abstract
An efficient Cp*CoIII -catalyzed C8-dienylation of quinoline-N-oxides was achieved by employing allenes bearing leaving groups at the α-position as the dienylating agents. The reaction proceeds by CoIII -catalyzed C-H activation of quinoline-N-oxides and regioselective migratory insertion of the allene followed by a β-oxy elimination, leading to overall dienylation. Site-selective C-H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional-group tolerance. C8-alkenylation of quinoline-N-oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram-scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Salman Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
26
|
Dhiman AK, Thakur A, Kumar R, Sharma U. Rhodium‐Catalyzed Selective C−H Bond Functionalization of Quinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankit K. Dhiman
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Ankita Thakur
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Rakesh Kumar
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Upendra Sharma
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| |
Collapse
|
27
|
Parmar D, Kumar R, Kumar R, Sharma U. Ru(II)-Catalyzed Chemoselective C(sp3)–H Monoarylation of 8-Methyl Quinolines with Arylboronic Acids. J Org Chem 2020; 85:11844-11855. [DOI: 10.1021/acs.joc.0c01603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
28
|
C-Methylation of Organic Substrates: A Comprehensive Overview. Part II—Methyl Metals as Methylating Agents. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00172-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt‐Catalyzed C8‐Dienylation of Quinoline‐
N
‐Oxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Akshay M. Nair
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Salman Khan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
30
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
31
|
|
32
|
Kumar R, Parmar D, Gupta SS, Chandra D, Dhiman AK, Sharma U. Cp*Rh
III
‐Catalyzed Sterically Controlled C(sp
3
)−H Selective Mono‐ and Diarylation of 8‐Methylquinolines with Organoborons**. Chemistry 2020; 26:4396-4402. [DOI: 10.1002/chem.201905591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Diksha Parmar
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Devesh Chandra
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| |
Collapse
|
33
|
Sharma S, Kumar S, Sharma A. Palladium‐Catalyzed Regioselective C−H Arylation of Quinoline‐
N
‐Oxides at C‐8 Position using Diaryliodonium Salts. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shivani Sharma
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Sehdev Kumar
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
34
|
Gupta SS, Kumar R, Sharma U. Regioselective Arylation of Quinoline N-Oxides (C8), Indolines (C7) and N- tert-Butylbenzamide with Arylboronic Acids. ACS OMEGA 2020; 5:904-913. [PMID: 31956844 PMCID: PMC6964538 DOI: 10.1021/acsomega.9b03884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Herein, we disclose Ru(II)-catalyzed regioselective distal C(sp2)-H arylation of quinoline N-oxide with arylboronic acids to 8-arylquinolines. In the developed method, the Ru(II)-catalyst shows dual activity, that is, distal C-H activation of quinoline N-oxides followed by in situ deoxygenation of arylated quinoline N-oxide in the same pot. The current catalytic method features use of Ru metal as the catalyst and arylboronic acids as the arylating source under mild reaction conditions. Use of the Rh(III)-catalyst in place of Ru(II) under the same conditions afforded 8-arylquinoline N-oxides with excellent regioselectivity. Furthermore, the developed Ru(II) catalytic system is also extended for the C(sp2)-H arylation of indolines, N-tert-butylbenzamide, and 6-(5H)-phenanthridinone. Formation of the quinoline N-oxide coordinated ruthenium adduct is found to be the key reaction intermediate, which has been characterized by single crystal X-ray diffraction and NMR spectroscopy.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
35
|
Kumar R, Sharma R, Kumar R, Sharma U. Cp*Rh(III)-Catalyzed Regioselective C(sp3)–H Methylation of 8-Methylquinolines with Organoborons. Org Lett 2019; 22:305-309. [DOI: 10.1021/acs.orglett.9b04331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
36
|
Zhou M, Liu C, Sun J, Zhang J, Wang H. Palladium‐Catalyzed Direct
ortho
‐C‐H Acylation of 2‐Phenylpyridine
N
‐oxides with Benzyl Alcohols/
α
‐Oxocarboxylic Acids. ChemistrySelect 2019. [DOI: 10.1002/slct.201904101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ming‐Dong Zhou
- School of Chemistry and Materials ScienceLiaoning Shihua University Fushun 113001 P. R. China
| | - Chang Liu
- School of Chemistry and Materials ScienceLiaoning Shihua University Fushun 113001 P. R. China
| | - Jing Sun
- School of Chemistry and Materials ScienceLiaoning Shihua University Fushun 113001 P. R. China
| | - Jing‐Hao Zhang
- School of Chemistry and Materials ScienceLiaoning Shihua University Fushun 113001 P. R. China
| | - He Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Fushun 113001 P. R. China
| |
Collapse
|
37
|
Kumar R, Kumar R, Parmar D, Gupta SS, Sharma U. Ru(II)/Rh(III)-Catalyzed C(sp3)–C(sp3) Bond Formation through C(sp3)–H Activation: Selective Linear Alkylation of 8-Methylquinolines and Ketoximes with Olefins. J Org Chem 2019; 85:1181-1192. [DOI: 10.1021/acs.joc.9b03257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Diksha Parmar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
38
|
Malykhin RS, Kokuev AO, Dorokhov VS, Nelyubina YV, Tartakovsky VA, Tabolin AA, Ioffe SL, Sukhorukov AY. Nucleophilic Halogenation of Cyclic Nitronates: A General Access to 3-Halo-1,2-Oxazines. J Org Chem 2019; 84:13794-13806. [PMID: 31595751 DOI: 10.1021/acs.joc.9b02010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article, comprehensive studies on the nucleophilic chlorination and bromination of readily available six-membered cyclic nitronates (1,2-oxazine-N-oxides) are reported. Under optimized conditions (POCl3 or (COBr)2 with Hünig's base), 3-halo-substituted 1,2-oxazines, which are difficult to access by other routes, were obtained in good to high yields. The latter were shown to be convenient precursors to other 3-substituted 1,2-oxazine derivatives using Lewis/Brønsted acid-assisted substitution of the halide atom for C-, S-, and N-nucleophiles.
Collapse
Affiliation(s)
- Roman S Malykhin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation.,Department of Chemistry , M. V. Lomonosov Moscow State University , 119991 , Leninskie gory, 1, str. 3 , Moscow , Russian Federation
| | - Aleksandr O Kokuev
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation.,D. Mendeleev University of Chemical Technology of Russia , 125047 , Miusskaya sq., 9 , Moscow , Russian Federation
| | - Valentin S Dorokhov
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation.,D. Mendeleev University of Chemical Technology of Russia , 125047 , Miusskaya sq., 9 , Moscow , Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds , 119991 , Vavilov str., 28 , Moscow , Russian Federation
| | - Vladimir A Tartakovsky
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 , Leninsky prospect, 47 , Moscow , Russian Federation.,D. Mendeleev University of Chemical Technology of Russia , 125047 , Miusskaya sq., 9 , Moscow , Russian Federation.,Plekhanov Russian University of Economics , 117997 , Stremyanny per., 36 , Moscow , Russian Federation
| |
Collapse
|
39
|
Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts 2019. [DOI: 10.3390/catal9100823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rh(III)-catalyzed C–H activation features mild reaction conditions, good functional group tolerance, high reaction efficiency, and regioselectivity. Recently, it has attracted tremendous attention and has been employed to synthesize various heterocycles, such as indoles, isoquinolines, isoquinolones, pyrroles, pyridines, and polyheterocycles, which are important privileged structures in biological molecules, natural products, and agrochemicals. In this short review, we attempt to present an overview of recent advances in Rh(III)-mediated C–H bond activation to generate diverse heterocyclic scaffolds with sp3 carbon centers.
Collapse
|
40
|
Gao Q, Shang Y, Song F, Ye J, Liu ZS, Li L, Cheng HG, Zhou Q. Modular Dual-Tasked C-H Methylation via the Catellani Strategy. J Am Chem Soc 2019; 141:15986-15993. [PMID: 31512477 DOI: 10.1021/jacs.9b07857] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a dual-tasked methylation that is based on cooperative palladium/norbornene catalysis. Readily available (hetero)aryl halides (39 iodides and 4 bromides) and inexpensive MeOTs or trimethylphosphate are utilized as the substrates and methylating reagent, respectively. Six types of "ipso" terminations can modularly couple with this "ortho" C-H methylation to constitute a versatile methylation toolbox for preparing diversified methylated arenes. This toolbox features inexpensive methyl sources, excellent functional-group tolerance, simple reaction procedures, and scalability. Importantly, it can be uneventfully extended to isotope-labeled methylation by switching to the corresponding reagents CD3OTs or 13CH3OTs. Moreover, this toolbox can be applied to late-stage modification of biorelevant substrates with complete stereoretention. We believe these salient and practical features of our dual-tasked methylation toolbox will be welcomed by academic and industrial researchers.
Collapse
|
41
|
Kim J, Kim S, Kim D, Chang S. Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline N-Oxides. J Org Chem 2019; 84:13150-13158. [DOI: 10.1021/acs.joc.9b01548] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
42
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
43
|
Beyond Friedel and Crafts: Directed Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7202-7236. [DOI: 10.1002/anie.201806629] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Indexed: 11/07/2022]
|
44
|
Dhiman AK, Chandra D, Kumar R, Sharma U. Catalyst-Free Synthesis of 2-Anilinoquinolines and 3-Hydroxyquinolines via Three-Component Reaction of Quinoline N-Oxides, Aryldiazonium Salts, and Acetonitrile. J Org Chem 2019; 84:6962-6969. [DOI: 10.1021/acs.joc.9b00739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Devesh Chandra
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
45
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
46
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: dirigierte Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie OrganiqueService de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie OrganiqueService de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
47
|
Kim J, Shin K, Jin S, Kim D, Chang S. Oxidatively Induced Reductive Elimination: Exploring the Scope and Catalyst Systems with Ir, Rh, and Ru Complexes. J Am Chem Soc 2019; 141:4137-4146. [DOI: 10.1021/jacs.9b00364] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Kwangmin Shin
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
48
|
Biswas A, Sarkar S, Samanta R. Rh
III
‐Catalyzed Straightforward Synthesis of Benzophenanthroline and Benzophenanthrolinone Derivatives using Anthranils. Chemistry 2019; 25:3000-3004. [DOI: 10.1002/chem.201806373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/11/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Souradip Sarkar
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
49
|
Kumar R, Kumar R, Chandra D, Sharma U. Cp*CoIII–Catalyzed Alkylation of Primary and Secondary C(sp3)-H Bonds of 8-Alkylquinolines with Maleimides. J Org Chem 2019; 84:1542-1552. [DOI: 10.1021/acs.joc.8b02974] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Devesh Chandra
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
50
|
|