1
|
Mairhofer C, Naderer D, Waser M. Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide. Beilstein J Org Chem 2024; 20:1510-1517. [PMID: 38978746 PMCID: PMC11228824 DOI: 10.3762/bjoc.20.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
We herein report the oxidative α-azidation of carbonyl compounds by using NaN3 in the presence of dibenzoyl peroxide catalyzed by tetrabutylammonium iodide (TBAI). By utilizing these readily available bulk chemicals a variety of cyclic β-ketocarbonyl derivatives can be efficiently α-azidated under operationally simple conditions. Control experiments support a mechanistic scenario involving in situ formation of an ammonium hypoiodite species which first facilitates the α-iodination of the pronucleophile, followed by a phase-transfer-catalyzed nucleophilic substitution by the azide. Furthermore, we also show that an analogous α-nitration by using NaNO2 under otherwise identical conditions is possible as well.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - David Naderer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
2
|
Xie T, Hu G, Zhang S, Xu T, Zeng F. Palladium/Lewis Acid Co-catalyzed Cyclocarbonylation of (2-Aminoaryl)(aryl)methanols: An Access to 3-Aryl-indolin-2-ones. J Org Chem 2023; 88:12367-12375. [PMID: 37590397 DOI: 10.1021/acs.joc.3c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A benign approach to valuable 3-aryl-indolin-2-ones was developed based on palladium(II)/Lewis acid-cocatalyzed cyclocarbonylation of readily available (2-aminoaryl)(aryl)methanols. The protocol features producing water as the only byproduct, mild reaction conditions, and good efficiency, constituting an array of 3-arylindolin-2-ones in yields of 35 to 90%. The reaction can be easily scaled up to the gram scale in good yields.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Gendan Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Shengjun Zhang
- State Energy Key Laboratory of Clean Coal Grading Conversion, Modern Chemical Technology Department, Shaanxi Key Laboratory of Low Rank Coal Pyrolysis, Shaanxi Coal and Chemical Technology Institute Company Limited, Xi'an 710100, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
3
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Ma YH, Yu Y, Fan S, Jia XP, Tang SA, Wang SQ, Dong WL, Li SY. Calix[4]arene Bridge Mononitration with tert-Butyl Nitrite: Synthesis of Bridging Chiral p- tert-Butylcalix[4]arene with a Mononitro Bridge Substituent. J Org Chem 2022; 87:7665-7672. [PMID: 35647791 DOI: 10.1021/acs.joc.2c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore the reaction universality of bridge nitration, the mononitration of different p-tert-butylcalix[4]arene derivatives was executed with tert-butyl nitrite as a nitration reagent. The effects of calix[4]arene conformations, substituents on the lower rim, and reaction conditions on bridge mononitration are systematically studied. The bridge nitration of p-tert-butylcalix[4]arene derivatives in 1,3-alternate, 1,2-alternate, and partial cone conformations can be smoothly executed while that of p-tert-butylcalix[4]arene derivatives strictly regulated in a cone conformation cannot. The nitration product complexity shows a positive correlation with the bridge-hydrogen types, and the optimal bridge-mononitrated substrate is calix[4]arene with only one bridge-hydrogen type. The electron-withdrawing substituent on the lower rim is apparently beneficial for the bridge mononitration. As a result, a variety of bridging chiral p-tert-butylcalix[4]arenes with a mononitro bridge substituent have been successfully synthesized. The highest bridge-mononitrated yield can reach 27% from 1,3-alternate p-tert-butylcalix[4]arene biscrown-5 under optimal reaction conditions.
Collapse
Affiliation(s)
- Ying-Hong Ma
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu Yu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Fan
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Pu Jia
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Sheng-An Tang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Li Dong
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shao-Yong Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Catalyst-free nitration of the aliphatic C-H bonds of tertiary β-keto esters with tert-butyl nitrite: access to α-quaternary α-amino acid precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Patra S, Mosiagin I, Katayev D, Giri R. Organic Nitrating Reagents. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNitro compounds are vital raw chemicals that are widely used in academic laboratories and industries for the preparation of various drugs, agrochemicals, and materials. Thus, nitrating reactions are of great importance for chemists and are even taught in schools as one of the fundamental transformations in organic synthesis. Since the discovery of the first nitrating reactions in the 19th century, progress in this field has been constant. Yet, for many years the classical electrophilic nitration approach using a mixture of strong mineral acids dominated the field. However, in recent decades, the attention of researchers has focused on new reactivity and new reagents that can provide access to nitro compounds in a practical and straightforward way under mild reaction conditions. Organic nitrating reagents have played a special role in this field since they have enhanced reactivity. They also allow nitration to be carried out in an ecofriendly and sustainable manner. This review examines the development and application of organic nitrating reagents.1 Introduction2 Organic Nitrating Reagents2.1 Alkyl Nitrites2.2 Nitroalkanes2.3 Alkyl Nitrates2.4 N-Nitroamides2.5 N-Nitropyrazole2.6 N-Nitropyridinium Salts3 Organic Nitrating Reagents Generated In Situ3.1 Acyl Nitrates3.2 Trimethylsilyl Nitrate3.3 Nitro Onium Salts4 Organic Nitronium Salts5 Organic Nitrates and Nitrites5.1 Ammonium Nitrates5.2 Heteroarylium Nitrates5.3 Other Organic Nitrates5.4 Organic Nitrites6 Conclusion and Outlook
Collapse
|
7
|
Pastor M, Vayer M, Weinstabl H, Maulide N. Electrochemical Umpolung C-H Functionalization of Oxindoles. J Org Chem 2021; 87:606-612. [PMID: 34962127 PMCID: PMC8749966 DOI: 10.1021/acs.joc.1c02616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Herein, we present
a general electrochemical method to access unsymmetrical
3,3-disubstituted oxindoles by direct C–H functionalization
where the oxindole fragment behaves as an electrophile. This Umpolung
approach does not rely on stoichiometric oxidants and proceeds under
mild, environmentally benign conditions. Importantly, it enables the
functionalization of these scaffolds through C–O, and by extension
to C–C or even C–N bond formation.
Collapse
Affiliation(s)
- Miryam Pastor
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Marie Vayer
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Harald Weinstabl
- Boehringer-Ingelheim RCV, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Nuno Maulide
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
8
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
9
|
Wei WT, Li Q, Zhang MZ, He WM. N-Radical enabled cyclization of 1,n-enynes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63702-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Sohtome Y, Kanomata K, Sodeoka M. Cross-Coupling Reactions of Persistent Tertiary Carbon Radicals. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Kanomata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Peng XB, He D, Sun GN, Yu Y, Ma YH, Tang SA, Dong WL, Li SY. Mononitration of a Calix[4]arene Methylene Bridge: Synthesis and Preliminary Catalysis Performances of Bridging Chiral p- tert-Butylcalix[4]arenes with a Monoamino Bridge Substituent in a 1,3-Alternate Conformation. J Org Chem 2021; 86:3952-3959. [PMID: 33577735 DOI: 10.1021/acs.joc.0c02795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to prepare bridging chiral p-tert-butylcalix[4]crown-5 with a mononitro bridge substituent in a 1,3-alternate conformation, a mononitration method of calix[4]arene bridging methylene has been first developed with tert-butyl nitrite as a nitration reagent. The effects of solvent, reaction temperature, reaction time, and nitration reagent dosage on bridge mononitration have been deeply explored to obtain an optimal nitration condition. The facile nitration presents a new key for calix[4]arene bridge derivatization. After further modification and diastereoisomeric resolution, a pair of bridging chiral p-tert-butylcalix[4]arenes with a monoamino bridge substituent were produced from the bridge-mono-nitrated calix[4]arene. Their preliminary catalysis results in the Henry reaction show good catalytic activities (up to 95% yield) and still low but obviously enhanced enantioselectivities (up to 22.3% ee from 7a, 6% ee from 1), which confirms that the structural transformation indeed improves asymmetric catalysis performances of bridging chiral calix[4]crown-5 amines in a 1,3-alternate conformation.
Collapse
Affiliation(s)
- Xin-Bang Peng
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Di He
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Guan-Nan Sun
- Tianjin Medical University General Hospital, 300070 Tianjin, China.,Tianjin Vocational College of Bioengineering, 300462 Tianjin, China
| | - Yu Yu
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Ying-Hong Ma
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Sheng-An Tang
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Wei-Li Dong
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| | - Shao-Yong Li
- School of Pharmacy, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
12
|
Chesnokov GA, Ageshina AA, Maryanova AV, Rzhevskiy SA, Gribanov PS, Topchiy MA, Nechaev MS, Asachenko AF. Nitromethane as a reagent for the synthesis of 3-nitroindoles from 2-haloarylamine derivatives. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-3028-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
14
|
Mir BA, Rajamanickam S, Begum P, Patel BK. tert
-Butyl Nitrite Mediated Nitro-Nitratosation of Internal Alkenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bilal Ahmad Mir
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Suresh Rajamanickam
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Pakiza Begum
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| |
Collapse
|
15
|
Song S, Meng Y, Li Q, Wei W. Recent Progress in the Construction of C−N Bonds
via
Metal‐Free Radical C(
sp
3
)−H Functionalization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000055] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Si‐Zhe Song
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| | - Ya‐Nan Meng
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 People's Republic of China
| | - Wen‐Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| |
Collapse
|
16
|
Hong G, Nahide PD, Kozlowski MC. Cyanomethylation of Substituted Fluorenes and Oxindoles with Alkyl Nitriles. Org Lett 2020; 22:1563-1568. [PMID: 32043885 DOI: 10.1021/acs.orglett.0c00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first example of metal-free cyanomethylenation from alkyl nitriles of sp3 C-H bonds to afford quaternary carbon centers is described. This oxidative protocol is operationally simple and features good functional group compatibility. This method provides a novel approach to highly functionalized fluorene and oxindole derivatives, which are commonly used in material and pharmaceutical areas. Control experiments provide evidence of a radical reaction process.
Collapse
Affiliation(s)
- Gang Hong
- Department of Chemistry, Roy and Diana Vagelos Laboratories , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Pradip D Nahide
- Department of Chemistry, Roy and Diana Vagelos Laboratories , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
17
|
Song S, Kang Q, Cao T, Lei K, Liu Y, Li Q, Wei W. Cu(NO
3
)
2
/Oxone‐Mediated Radical Nitration Cyclization of 1,6‐Enynes. ChemistrySelect 2019. [DOI: 10.1002/slct.201903285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si‐Zhe Song
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Qing‐Qing Kang
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Ting‐Ting Cao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Ke‐Wei Lei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Yan‐Yun Liu
- Department of Chemistry and Materials EngineeringHuaihua University Huaihua 418008 China
| | - Qiang Li
- Institution of Functional Organic Molecules and MaterialsSchool of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 China
| | - Wen‐Ting Wei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| |
Collapse
|
18
|
Dahiya A, Sahoo AK, Alam T, Patel BK. tert
‐Butyl Nitrite (TBN), a Multitasking Reagent in Organic Synthesis. Chem Asian J 2019; 14:4454-4492. [DOI: 10.1002/asia.201901072] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Anjali Dahiya
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Ashish Kumar Sahoo
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Tipu Alam
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| |
Collapse
|
19
|
Krylov IB, Budnikov AS, Lopat'eva ER, Nikishin GI, Terent'ev AO. Mild Nitration of Pyrazolin-5-ones by a Combination of Fe(NO 3 ) 3 and NaNO 2 : Discovery of a New Readily Available Class of Fungicides, 4-Nitropyrazolin-5-ones. Chemistry 2019; 25:5922-5933. [PMID: 30834586 DOI: 10.1002/chem.201806172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/24/2019] [Indexed: 02/02/2023]
Abstract
4-Nitropyrazolin-5-ones have been synthesized by the nitration of pyrazolin-5-ones at room temperature by employing the Fe(NO3 )3 /NaNO2 system. The method demonstrated selectivity towards the 4-position of pyrazolin-5-ones even in the presence of NPh and allyl substituents, which are sensitive to nitration. It was shown that other systems containing FeIII and nitrites, namely Fe(NO3 )3 /tBuONO, Fe(ClO4 )3 /NaNO2 , and Fe(ClO4 )3 /tBuONO, were also effective. Presumably, FeIII oxidizes the nitrite (NaNO2 or tBuONO) to form the NO2 free radical, which serves as the nitrating agent for pyrazolin-5-ones. The synthesized 4-nitropyrazolin-5-ones were discovered to be a new class of fungicides. Their in vitro activities against phytopathogenic fungi were found comparable or even superior to those of commercial fungicides (fluconazole, clotrimazole, triadimefon, and kresoxim-methyl). These results represent a promising starting point for the development of a new type of plant protection agents that can be easily synthesized from widely available reagents.
Collapse
Affiliation(s)
- Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| |
Collapse
|
20
|
Mudithanapelli C, Dhorma LP, Kim MH. PIFA-Promoted, Solvent-Controlled Selective Functionalization of C(sp2)–H or C(sp3)–H: Nitration via C–N Bond Cleavage of CH3NO2, Cyanation, or Oxygenation in Water. Org Lett 2019; 21:3098-3102. [DOI: 10.1021/acs.orglett.9b00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chandrashekar Mudithanapelli
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Lama Prema Dhorma
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi-hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
21
|
Shoberu A, Li C, Tao Z, Zhang G, Zou J. NaNO
2
/K
2
S
2
O
8
‐mediated Selective Radical Nitration/Nitrosation of Indoles: Efficient Approach to 3‐Nitro‐ and 3‐Nitrosoindoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical EngineeringSoochow University 199 Renai Street, Suzhou Jiangsu 215123 People's Republic of China
| | - Cheng‐Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical EngineeringSoochow University 199 Renai Street, Suzhou Jiangsu 215123 People's Republic of China
| | - Ze‐Kun Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical EngineeringSoochow University 199 Renai Street, Suzhou Jiangsu 215123 People's Republic of China
| | - Guo‐Yu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical EngineeringSoochow University 199 Renai Street, Suzhou Jiangsu 215123 People's Republic of China
| | - Jian‐Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical EngineeringSoochow University 199 Renai Street, Suzhou Jiangsu 215123 People's Republic of China
| |
Collapse
|
22
|
|
23
|
Feng T, He Y, Zhang X, Fan X. Synthesis of Functionalized Cyclobutane‐Fused Naphthalene Derivatives via Cascade Reactions of Allenynes with
tert
‐Butyl Nitrite. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801439] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tian Feng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
24
|
He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Selective synthesis of β-nitrated N-heterocycles and N-nitroso-2-alkoxyamine aldehydes from inactivated cyclic amines promoted by tBuONO and oxoammonium salt. Chem Commun (Camb) 2019; 55:12372-12375. [DOI: 10.1039/c9cc05963f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solvent-dependent-controlled selective synthesis of β-nitrated N-heterocycles and N-nitroso chain 2-alkoxyamine aldehydes has been successfully realized viatBuONO and oxoammonium salt promoted cascade reactions of inactivated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Yajie Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jiajie Qiao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|
25
|
Zhang TS, Wang R, Cai PJ, Hao WJ, Tu SJ, Jiang B. Silver-catalyzed nitration/annulation of 2-alkynylanilines for a tunable synthesis of nitrated indoles and indazole-2-oxides. Org Chem Front 2019. [DOI: 10.1039/c9qo00715f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two new types of silver-catalyzed nitration–annulations of 2-alkynylanilines with tert-butyl nitrite (TBN) were reported, leading to the selective formation of a variety of nitrated indoles and indazole-2-oxides.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Rong Wang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Pei-Jun Cai
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
26
|
Guo X, Lv C, Mahmood Q, Zhou L, Xu G, Wang Q. Solvent-controlled chemoselective N-dealkylation-N-nitrosation or C-nitration of N-alkyl anilines with tert-butyl nitrite. Org Chem Front 2019. [DOI: 10.1039/c9qo00965e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A metal-free, acid-free and chemoselective N-dealkylation-N-nitrosation or C-nitration of N-alkyl anilines has been developed.
Collapse
Affiliation(s)
- Xuanhua Guo
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Chengdong Lv
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qaiser Mahmood
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
27
|
Visible-light-induced 1,2-alkylarylation of alkenes with a-C(sp3)–H bonds of acetonitriles involving neophyl rearrangement under transition-metal-free conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
A para
-C-H Functionalization of Aniline Derivatives via In situ Generated Bulky Hypervalent Iodinium Reagents. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Holzschneider K, Mohr F, Kirsch SF. Synthesis and Reactivity of 3,3-Diazidooxindoles. Org Lett 2018; 20:7066-7070. [DOI: 10.1021/acs.orglett.8b03013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kristina Holzschneider
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | | | - Stefan F. Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
30
|
Mir BA, Singh SJ, Kumar R, Patel BK. tert-
Butyl Nitrite Mediated Different Functionalizations of Internal Alkenes: Paths to Furoxans and Nitroalkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bilal Ahmad Mir
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| | | | - Ritush Kumar
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| |
Collapse
|
31
|
Chen WT, Gao LH, Bao WH, Wei WT. Metal-Free C(sp3)–H Azidation in a Radical Strategy for the Synthesis of 3-Azido-2-oxindoles at Room Temperature. J Org Chem 2018; 83:11074-11079. [DOI: 10.1021/acs.joc.8b01678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Street, Ningbo 315211, China
| | - Le-Han Gao
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Street, Ningbo 315211, China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Street, Ningbo 315211, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Street, Ningbo 315211, China
| |
Collapse
|
32
|
Affiliation(s)
- Bhuttu Khan
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Himangsu Sekhar Dutta
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| |
Collapse
|
33
|
Chen WT, Wei WT. Recent Developments in the C(sp3
)−H Functionalization of 2-Oxindoles through Radical Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| |
Collapse
|
34
|
Pham PH, Doan SH, Vuong NTH, Nguyen VHH, Ha PTM, Phan NTS. Copper-catalyzed domino sequences: a new route to pyrido-fused quinazolinones from 2'-haloacetophenones and 2-aminopyridines. RSC Adv 2018; 8:20314-20318. [PMID: 35541660 PMCID: PMC9080829 DOI: 10.1039/c8ra03744b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
A new pathway to access pyrido-fused quinazolinones via a Cu(OAc)2-catalyzed domino sequential transformation between 2'-haloacetophenones and 2-aminopyridines was demonstrated. The solvent and base exhibited a remarkable effect on the transformation, in which the combination of DMSO and NaOAc emerged as the best system. Cu(OAc)2·H2O was more active towards the reaction than numerous other catalysts. This methodology is new and would be complementary to previous protocols for the synthesis of pyrido-fused quinazolinones.
Collapse
Affiliation(s)
- Phuc H Pham
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| | - Son H Doan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| | - Ngan T H Vuong
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| | - Vu H H Nguyen
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| | - Phuong T M Ha
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| | - Nam T S Phan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681
| |
Collapse
|
35
|
Kaur M, Kumar R. C‐N and N‐N bond formation via Reductive Cyclization: Progress in Cadogan /Cadogan‐Sundberg Reactionǂ. ChemistrySelect 2018. [DOI: 10.1002/slct.201800779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| | - Raj Kumar
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| |
Collapse
|
36
|
Chen WT, Bao WH, Ying WW, Zhu WM, Liang H, Wei WT. Copper-Promoted Tandem Radical Reaction of 2-Oxindoles with Formamides: Facile Synthesis of Unsymmetrical Urea Derivatives. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wei-Wei Ying
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ming Zhu
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| |
Collapse
|
37
|
Luo J, Wei WT. Recent Advances in the Construction of C-N Bonds Through Coupling Reactions between Carbon Radicals and Nitrogen Radicals. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junfei Luo
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
38
|
Zhu WM, Bao WH, Ying WW, Chen WT, Huang YL, Ge GP, Chen GP, Wei WT. TEMPO-Promoted C(sp3
)−H Hydroxylation of 2-Oxindoles at Room Temperature. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Ming Zhu
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wei-Wei Ying
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Yi-Ling Huang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Gan-Ping Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| |
Collapse
|
39
|
Tu D, Luo J, Jiang C. Copper-mediated domino C–H iodination and nitration of indoles. Chem Commun (Camb) 2018; 54:2514-2517. [DOI: 10.1039/c8cc00267c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient and cost-effective copper-mediated aerobic oxidative C–H iodination and nitration of indoles via double C–H functionalization is reported. The domino process proceeds smoothly under mild aerobic conditions to give 3-iodo-2-nitroindoles in one step with high regioselectivity and a broad substrate scope.
Collapse
Affiliation(s)
- Daoquan Tu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jun Luo
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Chao Jiang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|