1
|
Roy DS, Tanwer YBS, Patra SR, Kumar S, Bhunia S, Das D. Gold-catalyzed fluorination of alkynes/allenes: mechanistic explanations and reaction scope. Org Biomol Chem 2024; 23:11-35. [PMID: 39513472 DOI: 10.1039/d4ob01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the beginning of this century, there has been a great deal of research on homogeneous gold-catalyzed alkyne fluorination due to the precious values of fluorinated scaffolds in many bioactive natural products, drugs, and agrochemicals. This area of research, which originally took advantage of gold's mild Lewis acidity and tendency to form π-complexes with alkynes, has gained new momentum after Sadighi's discovery in 2007 of Au-catalyzed hydrofluorination of internal alkynes. The methods have enabled direct access to valuable fluoroalkanes, fluoroalkenes, α-fluorocarbonyls, and fluorinated carbo- and hetero-cycles in one pot from readily available alkyne precursors. Both nucleophilic and electrophilic fluorination modes with versatile reactivity have been used to achieve several new cascade reactions. This study covers the literature reports published since 2007 and provides a comprehensive summary of the methods, applications, and mechanistic insights into gold-catalyzed alkyne fluorination using electrophilic and nucleophilic fluorinating reagents.
Collapse
Affiliation(s)
- Deblina Singha Roy
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | | | - Snigdha Rani Patra
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Shivam Kumar
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj-713347, India.
| |
Collapse
|
2
|
Yan G, Ma J, Qi S, Kirillov AM, Yang L, Fang R. DFT rationalization of the mechanism and selectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols. Phys Chem Chem Phys 2024; 26:28484-28494. [PMID: 39511988 DOI: 10.1039/d4cp01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanism, regioselectivity, and chemoselectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols to give furan-3-carboxylate derivatives were explored by density functional theory (DFT). The obtained results revealed that the first step of the global reaction involves a nucleophilic attack of a pyridine-N-oxide derivative on the catalyst-ligated diynone, forming a vinyl intermediate that can isomerize to an α,α'-dioxo gold carbene upon the cleavage of the N-O bond. In the second step, a nucleophilic addition is also completed via pyridine-N-oxide instead of an alcohol proposed in the experiment. In the following steps, the selective nucleophilic addition of alcohol, 1,2-alkynyl migration, five-membered cyclization, and protodeauration lead to the furan-based products with the regeneration of the gold catalyst. The unique features of regio- and chemoselectivity were investigated in detail by the global reactivity index (GRI) and distortion/interaction analyses. Apart from fully rationalizing the experimental data, the DFT results provide an important contribution to understanding, optimizing, and further developing the related types of organic transformations.
Collapse
Affiliation(s)
- Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
3
|
Longuet M, Vitse K, Martin-Mingot A, Michelet B, Guégan F, Thibaudeau S. Determination of the Hammett Acidity of HF/Base Reagents. J Am Chem Soc 2024; 146:12167-12173. [PMID: 38626381 DOI: 10.1021/jacs.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Harnessing the acidity of HF/base reagents is of paramount importance to improve the efficiency and selectivity of fluorination reactions. Yet, no general method has been reported to evaluate their acidic properties, and experimental designs are still relying on a trial-and-error approach. We report a new method based on 19F NMR spectroscopy which allows highly sensitive measures and short-time analyses. Advantageously, the basic properties of the indicators can be determined upstream by DFT calculations, affording a simple yet robust semiempirical approach. In particular, the indicators used in this study were rationally designed to fit on the conceptually appealing and commonly used Hammett scale. This method has been applied to commercially available and recently developed HF/base reagents.
Collapse
Affiliation(s)
- Mélissa Longuet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Kassandra Vitse
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Agnès Martin-Mingot
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Bastien Michelet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Frédéric Guégan
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Sébastien Thibaudeau
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| |
Collapse
|
4
|
Tan JF, Bormann CT, Severin K, Cramer N. Chemo- and regio-divergent access to fluorinated 1-alkyl and 1-acyl triazenes from alkynyl triazenes. Chem Sci 2022; 13:3409-3415. [PMID: 35432853 PMCID: PMC8943902 DOI: 10.1039/d2sc00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The 1,1,2,2-tetrafluoroethylene unit is a prevalent pattern in bioactive molecules and functional materials. Despite being in principle a straightforward strategy to access this motif, the direct tetrafluorination of alkynes involves...
Collapse
Affiliation(s)
- Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Carl Thomas Bormann
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
5
|
Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem Rev 2021; 121:8979-9038. [DOI: 10.1021/acs.chemrev.0c00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
7
|
Neufeld J, Daniliuc CG, Gilmour R. Fluorohydration of alkynes via I(I)/I(III) catalysis. Beilstein J Org Chem 2020; 16:1627-1635. [PMID: 32704329 PMCID: PMC7356369 DOI: 10.3762/bjoc.16.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022] Open
Abstract
Substrate specificity is ubiquitous in biological catalysis, but less pervasive in the realm of small-molecule catalysis. Herein, we disclose an intriguing example of substrate specificity that was observed whilst exploring catalysis-based routes to generate α-fluoroketones from terminal and internal alkynes under the auspices of I(I)/I(III) catalysis. Utilising p-TolI as an inexpensive organocatalyst with Selectfluor® and amine/HF mixtures, the formation of protected α-fluoroketones from simple alkynes was realised. Whilst the transient p-TolIF2 species generated in situ productively engaged with pentynyl benzoate scaffolds to generate the desired α-fluoroketone motif, augmentation or contraction of the linker suppressed catalysis. The prerequisite for this substructure was established by molecular editing and was complemented with a physical organic investigation of possible determinants.
Collapse
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
8
|
Li JL, Lin E, Han XL, Li Q, Wang H. Synthesis of α-Fluorinated Imides via Direct Fluorohydroxylation of Ynamides. Org Lett 2019; 21:4255-4258. [PMID: 31095399 DOI: 10.1021/acs.orglett.9b01428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical synthesis of α-fluorinated imides via the catalyst-free fluorohydroxylation of ynamides is developed. The reaction employs commercially available Selectfluor (F-TEDA-BF4) and H2O as the fluorine and hydroxyl sources, respectively. A broad range of aryl- or alkyl-substituted ynamides were well applicable to the reaction with good functional group tolerance under simple and mild reaction conditions. The synthetic utility of the α-fluoroimide products was demonstrated by several value-added transformations. Preliminary mechanistic studies were conducted.
Collapse
Affiliation(s)
- Ji-Lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - E Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Xiang-Lei Han
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
9
|
Dubovtsev AY, Dar’in DV, Kukushkin VY. Gold(I)-Catalyzed Oxidation of Acyl Acetylenes to Vicinal Tricarbonyls. Org Lett 2019; 21:4116-4119. [DOI: 10.1021/acs.orglett.9b01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
10
|
Ghosh A, Hegde R, Makane VB, Sridhar B, Rode HB, Patil SA, Dateer RB. Transition metal-free functionalized hydration of alkynes: one-pot synthesis of fluorinated β-keto-imidates using Selectfluor. Org Biomol Chem 2019; 17:4440-4445. [PMID: 30984956 DOI: 10.1039/c9ob00527g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A transition metal-free, four-component one-pot synthesis of polyfunctionalized fluorinated β-keto-imidates via the functionalized hydration of alkynes has been described. The intermediate 1,3-ketoamino moiety was obtained from easily accessible arylpropioladehyde and arlyhydroxylamine and was treated with Selectfluor delivering fluorinated β-keto-imidates. A wide variety of functional groups are tolerated under mild reaction conditions and the product applicability is highlighted.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be-University), Bangalore, Karnataka 562112, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dubovtsev AY, Dar'in DV, Kukushkin VY. Three‐Component [2+2+1] Gold(I)‐Catalyzed Oxidative Generation of Fully Substituted 1,3‐Oxazoles Involving Internal Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Dmitry V. Dar'in
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
12
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Alcaide B, Almendros P, Lázaro-Milla C, Delgado-Martínez P. Divergence in Ynone Reactivity: Atypical Cyclization by 3,4-Difunctionalization versus Rare Bis(cyclization). Chemistry 2018; 24:8186-8194. [DOI: 10.1002/chem.201800630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de, Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General; Consejo Superior de Investigaciones Científicas, IQOG-CSIC; Juan de la Cierva 3 28006 Madrid Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de, Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | | |
Collapse
|
14
|
Zeng X, Lu Z, Liu S, Hammond GB, Xu B. Metal-free, Regio-, and Stereo-Controlled Hydrochlorination and Hydrobromination of Ynones and Ynamides. J Org Chem 2017; 82:13179-13187. [PMID: 29166765 PMCID: PMC5735994 DOI: 10.1021/acs.joc.7b02257] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
We developed an atom-economical
and metal-free method for the regio-
and stereo-selective hydrohalogenation of ynones and ynamides using
easy to handle DMPU/HX (X = Br or Cl) reagents. The reaction operates
under mild conditions and a range of functional groups is well tolerated.
We propose that the hydrohalogenation of ynones gives the anti-addition products via a concerted multimolecular AdE3 mechanism and that the hydrohalogenation of ynamides produces
the syn-addition products via a cationic keteniminium
intermediate.
Collapse
Affiliation(s)
- Xiaojun Zeng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , 2999 North Renmin Lu, Shanghai 201620, China
| | - Zhichao Lu
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| | - Shiwen Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , 2999 North Renmin Lu, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|