1
|
Saito Y, Kobayashi S. Continuous-Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angew Chem Int Ed Engl 2024; 63:e202313778. [PMID: 37991463 DOI: 10.1002/anie.202313778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Transition metal-catalyzed enantioselective C-H bond functionalizations have become efficient methods for the synthesis of complex optically active molecules. Heterogeneous catalysts for this chemistry remain largely unexplored despite the advantages they offer in terms of ease of separation and reuse of catalysts. Herein, we report the development of heterogeneous chiral Rh catalysts for continuous-flow enantioselective hydroacylations. Heterogeneous catalysts could be prepared simply by mixing supports and Rh complexes. The prepared catalysts exhibited excellent activity and enantioselectivity affording optically active ketones in quantitative yields with 99 % ee's. Under the optimized reaction conditions, a turnover number >300 was achieved without the leaching of Rh species. The catalysts exhibited a wide substrate scope and in sequential-flow reactions with other heterogeneous catalysts, the syntheses of biologically active molecules and functional materials were demonstrated.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Matsuoka W, Harabuchi Y, Maeda S. Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wataru Matsuoka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Lai J, Yang C, Csuk R, Song B, Li S. Palladium Catalyzed Enantioselective Hayashi-Miyaura Reaction for Pharmaceutically Important 4-Aryl-3,4-dihydrocoumarins. Org Lett 2022; 24:1329-1334. [PMID: 35133842 DOI: 10.1021/acs.orglett.1c04366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first palladium-catalyzed asymmetric addition of arylboronic acids to coumarins was successfully established, providing a straightforward asymmetric approach to achieving pharmaceutically important 4-aryl-3,4-dihydrocoumarins. This methodology features easily accessible and bench-stable ligands, a wide substrate scope, mild conditions, and accommodation of electron-withdrawing arylboronic acids.
Collapse
Affiliation(s)
- Jixing Lai
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chen Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle (Saale), Germany
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
4
|
Selective hydrosilylation of allyl chloride with trichlorosilane. Commun Chem 2021; 4:63. [PMID: 36697705 PMCID: PMC9814849 DOI: 10.1038/s42004-021-00502-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/31/2021] [Indexed: 01/28/2023] Open
Abstract
The transition-metal-catalysed hydrosilylation reaction of alkenes is one of the most important catalytic reactions in the silicon industry. In this field, intensive studies have been thus far performed in the development of base-metal catalysts due to increased emphasis on environmental sustainability. However, one big drawback remains to be overcome in this field: the limited functional group compatibility of the currently available Pt hydrosilylation catalysts in the silicon industry. This is a serious issue in the production of trichloro(3-chloropropyl)silane, which is industrially synthesized on the order of several thousand tons per year as a key intermediate to access various silane coupling agents. In the present study, an efficient hydrosilylation reaction of allyl chloride with trichlorosilane is achieved using the Rh(I) catalyst [RhCl(dppbzF)]2 (dppbzF = 1,2-bis(diphenylphosphino)-3,4,5,6-tetrafluorobenzene) to selectively form trichloro(3-chloropropyl)silane. The catalyst enables drastically improved efficiency (turnover number, TON, 140,000) and selectivity (>99%) to be achieved compared to conventional Pt catalysts.
Collapse
|
5
|
Park S, Lee HK. Efficient kinetic resolution in the asymmetric transfer hydrogenation of 3-aryl-indanones: applications to a short synthesis of (+)-indatraline and a formal synthesis of ( R)-tolterodine. RSC Adv 2021; 11:23161-23183. [PMID: 35480442 PMCID: PMC9036567 DOI: 10.1039/d1ra04538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Efficient kinetic resolution occurs in ATH of racemic 3-arylindanones using (R,R)-or (S,S)-Ts-DENEB catalyst and HCO2H/Et3N mixture providing near equal yields of cis-3-arylindanols and unreacted 3-arylindanones with excellent stereoselectivities.
Collapse
Affiliation(s)
- Songsoon Park
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| | - Hyeon-Kyu Lee
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| |
Collapse
|
6
|
Trouvé J, Gramage-Doria R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem Soc Rev 2021; 50:3565-3584. [DOI: 10.1039/d0cs01339k] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The implementation of interactions beyond hydrogen bonding in the 2nd coordination sphere of transition metal catalysts is rare. However, it has already shown great promise in last 5 years, providing new tools to control the activity and selectivity as here reviewed.
Collapse
|
7
|
Korenaga T, Kori H, Asai S, Kowata R, Shirai M. Organic Solvent‐free Asymmetric 1,4‐Addition in Liquid‐ or Solid‐State using Conventional Stirring Catalyzed by a Chiral Rhodium Complex Developed as a Homogeneous Catalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| | - Hiroto Kori
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
| | - Shota Asai
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| | - Ryo Kowata
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
| | - Masayuki Shirai
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| |
Collapse
|
8
|
Gilbert SH, Fuentes JA, Cordes DB, Slawin AMZ, Clarke ML. Phospholane-Phosphite Ligands for Rh Catalyzed Enantioselective Conjugate Addition: Unusually Reactive Catalysts for Challenging Couplings. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sophie H. Gilbert
- School of Chemistry; University of St Andrews; KY16 9ST St Andrews Fife UK
| | - José A. Fuentes
- School of Chemistry; University of St Andrews; KY16 9ST St Andrews Fife UK
| | - David B. Cordes
- School of Chemistry; University of St Andrews; KY16 9ST St Andrews Fife UK
| | | | - Matthew L. Clarke
- School of Chemistry; University of St Andrews; KY16 9ST St Andrews Fife UK
| |
Collapse
|
9
|
Kikuchi J, Terada M. Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral Brønsted Acids. Angew Chem Int Ed Engl 2019; 58:8458-8462. [PMID: 31016828 DOI: 10.1002/anie.201903111] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Indexed: 11/10/2022]
Abstract
An enantioselective intermolecular addition reaction of azlactones, as carbon nucleophiles, with styrene derivatives, as simple olefins, was demonstrated using a newly developed chiral Brønsted acid catalyst, namely, F10 BINOL-derived N-triflyl phosphoramide. Addition products having vicinal tetrasubstituted carbon centers, one of which is an all-carbon quaternary stereogenic center, were formed in good yields with moderate to high stereoselectivities. Extremely high acidity of the new chiral Brønsted acid was confirmed by its calculated pKa value based on DFT studies and is the key to accomplishing not only high catalytic activity but also efficient stereocontrol in the intermolecular addition.
Collapse
Affiliation(s)
- Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Kikuchi J, Terada M. Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral Brønsted Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Kikuchi
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
11
|
Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem Rev 2019; 119:6509-6560. [DOI: 10.1021/acs.chemrev.9b00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Seihwan Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Kikuchi J, Aramaki H, Okamoto H, Terada M. F 10BINOL-derived chiral phosphoric acid-catalyzed enantioselective carbonyl-ene reaction: theoretical elucidation of stereochemical outcomes. Chem Sci 2019; 10:1426-1433. [PMID: 30809359 PMCID: PMC6354837 DOI: 10.1039/c8sc03587c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/17/2018] [Indexed: 11/24/2022] Open
Abstract
An enantioselective carbonyl-ene reaction of 1,1-disubstituted olefins with ethyl glyoxylate was accomplished using an F10BINOL-derived chiral phosphoric acid of which the perfluoro-binaphthyl skeleton is beneficial not only for adopting high catalytic activity but also for creating an effective chiral environment.
An F10BINOL-derived chiral phosphoric acid was shown to be an effective catalyst for an enantioselective carbonyl-ene reaction of 1,1-disubstituted olefins with ethyl glyoxylate as the common enophile. The perfluoro-binaphthyl skeleton is beneficial not only for adopting high catalytic activity but also for creating an effective chiral environment for enantioselective transformations. Indeed, the reaction afforded enantio-enriched homoallylic alcohols in high yields with high enantioselectivities. Theoretical studies identified that the multi-point C–H···O hydrogen bonds and the π interactions between the substrates and the 6-methoxy-2-naphthyl substituents at the 3,3′-positions of the F10BINOL skeleton play a crucial role in determining the stereochemical outcomes. The significance of the perfluoro-binaphthyl skeleton in achieving the high enantioselectivity was also evaluated through a structural analysis of the catalysts.
Collapse
Affiliation(s)
- Jun Kikuchi
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| | - Hiromu Aramaki
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| | - Hiroshi Okamoto
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| | - Masahiro Terada
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| |
Collapse
|
13
|
Kawashima K, Sato T, Ogasawara M, Kamikawa K, Mori S. Theoretical investigations of Rh-catalyzed asymmetric 1,4-addition to enones using planar-chiral phosphine-olefin ligands. J Comput Chem 2019; 40:113-118. [PMID: 30144109 DOI: 10.1002/jcc.25550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/09/2022]
Abstract
Recently, planar-chiral phosphine-olefin ligands based on (η6 -arene)chromium(0) and (η5 -cyclopentadienyl)manganese(I), which are known as first- and second-generation, respectively, have been developed. These ligands were employed for Rh-catalyzed asymmetric 1,4-addition to enones. First-generation ligands involve high enantioselectivity for cyclic enones (>98% ee). Second-generation ligands involve high enantioselectivity for not only cyclic enones but also for acyclic enones (>98% ee). In this study, we have performed DFT calculations to investigate the origin of enantioselectivity. The theoretical values of enantioselectivities were found to be in good agreement with the experimental values obtained for a cyclic enone, 2-cyclopenten-1-one, using both the first- and second-generation ligands. Regarding an acyclic enone, 3-penten-2-one, it was found that the s-cis type decreases the enantioselectivity because the transition states in the s-cis type have a large steric repulsion. Energy decomposition analysis (EDA) and natural bond orbital (NBO) analysis indicate that it is important to study the orbital interactions in the transition states of the insertion step for the acyclic enone attacked from si-face with the second-generation ligand. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyohei Kawashima
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takehiro Sato
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Masamichi Ogasawara
- Department of Natural Science, Graduate School of Science and Technology, Tokushima University, 2-1 Minamijousanjimachicho, Tokushima, Tokushima, 770-8506, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Nakakugakuentyo, Sakai, Osaka 599-8531, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
14
|
Phosphines featuring a hexafluorocyclopentene skeleton: Synthesis, coordination properties, and applications for Lewis-acidic transition-metal catalysts. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0040-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Mannu A, Drexler HJ, Thede R, Ferro M, Baumann W, Rüger J, Heller D. Oxidative addition of CH2Cl2 to neutral dimeric rhodium diphosphine complexes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Mannu A, Ferro M, Möller S, Heller D. Monomerisation of [Rh2(1,3-Bis-(Diphenylphosphino)-Propane)2(μ2-Cl)2] Detected by Pulsed Gradient Spin Echo Spectroscopy and 31P Nmr Monitoring of Metathesis Experiments. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15333065984578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A pulsed gradient spin echo experiment on [Rh2(1,3-bis-(diphenylphosphino)-propane)2(μ2-Cl)2] complex has been conducted in order to shed light on the supposed monomerisation process of [Rh2(diphosphine)2(μ2-Cl)2] complexes in solution. Such a process should generate a 14-electron [Rh(diphosphine)Cl] complex, which has only been postulated to date. Metathesis experiments on [Rh2(1,3-bis-(diphenylphosphino)-propane)2(μ2-Cl)2] and [Rh2(bis[2-(diphenylphosphino)phenyl]ether)2(μ2-Cl)2] complexes, analysed by 31P NMR, reveal that monomerisation of [Rh2(diphosphine)2(μ2-Cl)2] complexes is not restricted to the case of 1,3-bis-(diphenylphosphino)propane.
Collapse
Affiliation(s)
- Alberto Mannu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Saskia Möller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
18
|
Shimizu M, Kikuchi J, Kondoh A, Terada M. Chiral Brønsted acid-catalyzed intramolecular S N2' reaction for enantioselective construction of a quaternary stereogenic center. Chem Sci 2018; 9:5747-5757. [PMID: 30079184 PMCID: PMC6050593 DOI: 10.1039/c8sc01942h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Construction of a quaternary stereogenic center was accomplished through the enantioselective intramolecular allylic substitution reaction of bis-trichloroacetimidate catalyzed by a chiral phosphoramide derivative.
An enantioselective intramolecular anti-SN2′ cyclization reaction for the construction of a quaternary stereogenic center was accomplished through the activation of the leaving group using a binaphthol-derived phosphoramide as the chiral Brønsted acid catalyst. The present allylic substitution reaction is beneficial not only for the regioselective nucleophilic substitution at the multi-substituted site of the double bond but also for controlling the stereochemical outcome because of using a geometrically defined double bond. Indeed, the reaction afforded synthetically useful amino alcohol derivatives having a tetra-substituted carbon center in a highly enantioselective manner in most cases, in which the modification of the sulfonamide unit of the phosphoramide catalyst was demonstrated to improve the enantioselectivity. Experimental and theoretical elucidation of the reaction mechanism suggested that the reaction proceeds through a synchronous anti-SN2′ pathway, although NMR monitoring of the reaction indicated the formation of the phosphorimidate ester via the SN2 reaction of the catalyst with the substrate, which results in catalyst deactivation. Further theoretical studies of the origin of the stereochemical outcome at the generated quaternary stereogenic center were performed. Structural analysis of the transition states at the enantio-determining step revealed that the distinct discrimination of the substituents attached to the geometrically defined double bond is achieved by the anthryl and sulfonamide substituents of the catalyst through the three-point hydrogen bonding interactions and the T-shaped C–H···π interactions.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| | - Jun Kikuchi
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan
| | - Masahiro Terada
- Department of Chemistry , Graduate School of Science , Tohoku University , Aoba-ku , Sendai 980-8578 , Japan . ; ; Tel: +81-22-795-6602
| |
Collapse
|
19
|
Huber R, Passera A, Gubler E, Mezzetti A. P-Stereogenic PN(H)P Iron(II) Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Raffael Huber
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| | | | - Erik Gubler
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| | - Antonio Mezzetti
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| |
Collapse
|
20
|
Li F, Korenaga T, Nakanishi T, Kikuchi J, Terada M. Chiral Phosphoric Acid Catalyzed Enantioselective Ring Expansion Reaction of 1,3-Dithiane Derivatives: Case Study of the Nature of Ion-Pairing Interaction. J Am Chem Soc 2018; 140:2629-2642. [PMID: 29377689 DOI: 10.1021/jacs.7b13274] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chiral counterion controlled asymmetric catalysis via an ion-pairing interaction has attracted immense attention in recent years. Despite a number of successful studies, the mechanistic elucidation of the stereocontrolling element in the ion-pairing interaction is rarely conducted and hence its nature is still far from being well understood. Herein we report an in-depth mechanistic case study of a newly developed enantioselective ring expansion reaction of 1,3-dithiane derivatives catalyzed by chiral phosphoric acid (CPA). An unprecedented enantioselective 1,2-sulfur rearrangement/stereospecific nucleophilic addition sequence was proven to be the stereoselective pathway. More importantly, by thorough investigation of the intrinsic nature of the stereospecific nucleophilic addition to the cationic thionium intermediate, we discovered that the key interaction in this process is the nonclassical C-H···O hydrogen bonds formed between the conjugate base of the CPA catalyst and the cationic intermediate. These C-H···O hydrogen bonds not only bind the catalyst to the substrates to form energetically favored states throughout the overall processes but also firmly maintain the relative positions of these fragments as the "fixed" contact ion pair to sustain the chiral information generated at the initial sulfur rearrangement step. This mechanistic case study provides a very clear understanding of the nature of the ion-pairing interaction in organocatalysis. The conclusion encourages the further development of the research field with the focus to design new organocatalysts and cultivate novel organocatalytic transformations.
Collapse
Affiliation(s)
- Feng Li
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University , 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Taishi Nakanishi
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|