1
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
2
|
Singha K, Habib I, Hossain M. Quinoline N‐Oxide: A Versatile Precursor in Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Koustav Singha
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Imran Habib
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Mossaraf Hossain
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| |
Collapse
|
3
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
4
|
Abstract
C−H methylation of sp2 and sp3 carbon centers is significant in many biological processes. Methylated drug candidates show unique properties due to the change in solubility, conformation and metabolic activities. Several photo-catalyzed, electrochemical, mechanochemical and metal-free techniques that are widely utilized strategies in medicinal chemistry for methylation of arenes and heteroarenes have been covered in this review.
Collapse
|
5
|
Guo X, Li P, Wang Q, Wang Q, Wang L. Remote Selective Decarboxylative Difluoroarylmethylation of 8-Aminoquinolines under Transition Metal-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01912k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile transition metal-free decarboxylative C4 selective C-H difluoroarylmethylation of 8-aminoquinolines has been developed. This strategy proceeds under simple aqueous conditions and displays a broad substrate scope and excellent functional...
Collapse
|
6
|
Copper/manganese oxide catalyzed regioselective amination of quinoline N-oxides: An example of synergistic cooperative catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Sahoo T, Sarkar S, Ghosh SC. Copper(II) mediated C-8 amination of 1-naphthylamide derivatives with acyclic and cyclic amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
9
|
Azizollahi H, García-López JA. Recent Advances on Synthetic Methodology Merging C-H Functionalization and C-C Cleavage. Molecules 2020; 25:E5900. [PMID: 33322116 PMCID: PMC7764206 DOI: 10.3390/molecules25245900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The functionalization of C-H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C-H bonds along with the cleavage of C-C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C-C bond takes place, basically attending to the scission of strained or unstrained C-C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C-H and C-C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
| | | |
Collapse
|
10
|
Sen C, Sarvaiya B, Sarkar S, Ghosh SC. Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C-H Activation. J Org Chem 2020; 85:15287-15304. [PMID: 33141591 DOI: 10.1021/acs.joc.0c02120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A room-temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst, and it acts as an electron-transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome, showing that C-H bond activation is irreversible and not the rate-determining step.
Collapse
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavesh Sarvaiya
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Qin P, Sun J, Wang F, Wang J, Wang H, Zhou M. Visible‐Light‐Induced C2 Alkylation of Heterocyclic N‐Oxides with N‐Hydroxyphthalimide Esters under Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pi‐Tao Qin
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing Sun
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Fei Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing‐Yun Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| |
Collapse
|
12
|
Baykov SV, Boyarskiy VP. Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
14
|
Jo W, Baek SY, Hwang C, Heo J, Baik MH, Cho SH. ZnMe2-Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. J Am Chem Soc 2020; 142:13235-13245. [DOI: 10.1021/jacs.0c06827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung-yeol Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Yuan JW, Chen Q, Li C, Zhu JL, Yang LR, Zhang SR, Mao P, Xiao YM, Qu LB. Silver-catalyzed direct C-H oxidative carbamoylation of quinolines with oxamic acids. Org Biomol Chem 2020; 18:2747-2757. [PMID: 32227021 DOI: 10.1039/d0ob00358a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silver-catalyzed efficient and direct C-H carbamoylation of quinolines with oxamic acids to access carbamoylated quinolines has been developed through oxidative decarboxylation reaction. The reaction proceeds smoothly over a broad range of substrates with excellent functional group tolerance and excellent yields under mild conditions.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Chuang Li
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Kouznetsov VV, Vargas Méndez LY, Puerto Galvis CE, Ortiz Villamizar MC. The direct C–H alkenylation of quinoline N-oxides as a suitable strategy for the synthesis of promising antiparasitic drugs. NEW J CHEM 2020. [DOI: 10.1039/c9nj05054j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the direct C–H alkenylation of quinoline N-oxides covering the metal-free and transition-metal catalysed protocols, and the regioselectivity during the synthesis of antiparasitic drugs based on quinoline scaffold.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Leonor Y. Vargas Méndez
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Marlyn C. Ortiz Villamizar
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| |
Collapse
|
17
|
Sarmah BK, Konwar M, Bhattacharyya D, Adhikari P, Das A. Regioselective Cyanation of Six‐MemberedN‐Heteroaromatic Compounds Under Metal‐, Activator‐, Base‐ and Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bikash Kumar Sarmah
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Monuranjan Konwar
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | | | - Priyanka Adhikari
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Animesh Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| |
Collapse
|
18
|
Sen C, Sahoo T, Singh H, Suresh E, Ghosh SC. Visible Light-Promoted Photocatalytic C-5 Carboxylation of 8-Aminoquinoline Amides and Sulfonamides via a Single Electron Transfer Pathway. J Org Chem 2019; 84:9869-9896. [PMID: 31307188 DOI: 10.1021/acs.joc.9b00942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient photocatalytic method was developed for the remote C5-H bond carboxylation of 8-aminoquinoline amide and sulfonamide derivatives. This methodology uses in situ generated •CBr3 radical as a carboxylation agent with alcohol and is further extended to a variety of arenes and heteroarenes to synthesize the desired carboxylated product in moderate-to-good yields. The reaction proceeding through a single electron transfer pathway was established by a control experiment, and a butylated hydroxytoluene-trapped aryl radical cation intermediate in high-resolution mass spectrometry was identified.
Collapse
|
19
|
Liu Y, Chen Z, Wang QL, Zhou CS, Xiong BQ, Yang CA, Tang KW. Synthesis of 2-Acyl-3,4-dihydronaphthalenes by Silver-Promoted Oxidative C–C σ-Bond Acylation/Arylation of Alkylidenecyclopropanes with α-Ketoacids. J Org Chem 2019; 84:9984-9994. [DOI: 10.1021/acs.joc.9b01125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Cong-Shan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Chang-An Yang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
20
|
Sahoo T, Sen C, Singh H, Suresh E, Ghosh SC. Copper‐Catalyzed C‐4 Carboxylation of 1‐Naphthylamide Derivatives with CBr
4
/MeOH. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapan Sahoo
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Harshvardhan Singh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - E. Suresh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Analytical and Environmental Science Division and Centralized Instrument Facility CSIR-CSMCRI Bhavnagar 364002 Gujarat India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
21
|
Dhiman AK, Gupta SS, Sharma R, Kumar R, Sharma U. Rh(III)-Catalyzed C(8)–H Activation of Quinoline N-Oxides: Regioselective C–Br and C–N Bond Formation. J Org Chem 2019; 84:12871-12880. [DOI: 10.1021/acs.joc.9b01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
22
|
Budhwan R, Yadav S, Murarka S. Late stage functionalization of heterocycles using hypervalent iodine(iii) reagents. Org Biomol Chem 2019; 17:6326-6341. [PMID: 31215580 DOI: 10.1039/c9ob00694j] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Late stage functionalization (LSF) through direct X-H manipulations (X = C, N) enables synthetic chemists to accelerate the diversification of natural products, agrochemicals and pharmaceuticals allowing rapid access to novel bioactive molecules without resorting to arduous de novo synthesis. LSF does not only allow tapping of the hitherto unexplored chemical space but also renders the synthetic sequence more straightforward, atom economical and cost-effective. In this regard, the recent decade has witnessed the emergence of hypervalent iodine(iii) reagents as a powerful synthetic tool owing to their easy availability, mild reaction conditions, remarkable oxidizing properties and high functional group tolerance. Iodine(iii) reagents have tremendous applications in the regio- and chemo-selective late-stage functionalization of a diverse variety of heterocycles through an exciting range of transformations, such as oxidative amination, cross-dehydrogenative coupling (CDC), fluoroalkylation, azidation, halogenation and oxidation. The present review, classified according to the types of synthetic methods involved, encompasses all these recent developments in the field of transition-metal-free iodine(iii)-catalyzed/mediated direct functionalizations of heterocycles with representative examples and insightful mechanistic discussions.
Collapse
Affiliation(s)
- Rajnish Budhwan
- Department of Chemistry, Indian Institute of Technology Jodhpur, NH-65 Nagaur Road, Karwar - 342037, Jodhpur District, Rajasthan, India.
| | - Suman Yadav
- Department of Chemistry, Indian Institute of Technology Jodhpur, NH-65 Nagaur Road, Karwar - 342037, Jodhpur District, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, NH-65 Nagaur Road, Karwar - 342037, Jodhpur District, Rajasthan, India.
| |
Collapse
|
23
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
24
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
25
|
Liu Y, Wang QL, Chen Z, Zhou Q, Li H, Xu WY, Xiong BQ, Tang KW. Oxone-Mediated Radical C–C Bond Acetmethylation/Arylation of Methylenecyclopropanes and Vinylcyclopropanes with α-Alkyl Ketones: Facile Access to Oxoalkyl-Substituted 3,4-Dihydronaphthalenes. J Org Chem 2019; 84:5413-5424. [DOI: 10.1021/acs.joc.9b00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hua Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Yuan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
26
|
Xing L, Zhang Y, Du Y. Hypervalent Iodine-Mediated Synthesis of Spiroheterocycles via Oxidative Cyclization. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211122802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypervalent iodine reagents have been widely used in the construction of many important building blocks and privileged scaffolds of bioactive natural products. This review article aims to briefly discuss strategies that have used hypervalent iodine reagents as oxidants to synthesize spiroheterocyclic compounds and to stimulate further study for novel syntheses of spiroheterocyclic core structures using hypervalent iodine reagents under metal-free conditions.
Collapse
Affiliation(s)
- Linlin Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yong Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
28
|
Paul D, Khatua S, Chatterjee PN. A facile iron-catalyzed dual C–C bond cleavage: an approach towards triarylmethanes. NEW J CHEM 2019. [DOI: 10.1039/c9nj00149b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient iron-catalyzed dual C–C bond cleaving reaction has been developed for the synthesis of triarylmethanes.
Collapse
Affiliation(s)
- Dipankar Paul
- Department of Chemistry
- National Institute of Technology Meghalaya
- Shillong 793003
- India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | | |
Collapse
|
29
|
Xu F, Li Y, Huang X, Fang X, Li Z, Jiang H, Qiao J, Chu W, Sun Z. Hypervalent Iodine(III)‐Mediated Regioselective Cyanation of Quinoline
N
‐Oxides with Trimethylsilyl Cyanide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Xu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Yuqin Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xin Huang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xinjie Fang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhuofei Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Hongshuo Jiang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Jingyi Qiao
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| |
Collapse
|
30
|
Wu Q, Han S, Ren X, Lu H, Li J, Zou D, Wu Y, Wu Y. Pd-Catalyzed Alkylation of (Iso)quinolines and Arenes: 2-Acylpyridine Compounds as Alkylation Reagents. Org Lett 2018; 20:6345-6348. [PMID: 30284838 DOI: 10.1021/acs.orglett.8b02498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first Pd-catalyzed alkylation of (iso)quinolines and arenes is reported. The readily available and bench-stable 2-acylpyridine compounds were used as an alkylation reagent to form the structurally versatile alkylated (iso)quinolines and arenes. The method affords a convenient pathway for the introduction of alkyl groups into organic molecules.
Collapse
Affiliation(s)
- Qingsong Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Shuaijun Han
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Xiaoxiao Ren
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Hongtao Lu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou , 450052 , People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China.,Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou , 450052 , People's Republic of China.,Tetranov International, Inc.. 100 Jersey Avenue, Suite A340 , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
31
|
Singh H, Sen C, Sahoo T, Ghosh SC. A Visible Light-Mediated Regioselective Halogenation of Anilides and Quinolines by Using a Heterogeneous Cu-MnO Catalyst. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Harshvardhan Singh
- Natural Products and Green Chemistry Division; CSIR-Central Salt and Marine Chemicals Research Institute; G.B. Marg -364002 Bhavnagar Gujarat India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division; CSIR-Central Salt and Marine Chemicals Research Institute; G.B. Marg -364002 Bhavnagar Gujarat India
| | - Tapan Sahoo
- Natural Products and Green Chemistry Division; CSIR-Central Salt and Marine Chemicals Research Institute; G.B. Marg -364002 Bhavnagar Gujarat India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division; CSIR-Central Salt and Marine Chemicals Research Institute; G.B. Marg -364002 Bhavnagar Gujarat India
| |
Collapse
|
32
|
Bystrov DM, Zhilin ES, Fershtat LL, Romanova AA, Ananyev IV, Makhova NN. Tandem Condensation/Rearrangement Reaction of 2-AminohetareneN-Oxides for the Synthesis of Hetaryl Carbamates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dmitry M. Bystrov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Egor S. Zhilin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
| | - Anna A. Romanova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College; Miusskaya sq. 9 125047 Moscow Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
| |
Collapse
|
33
|
Lai M, Zhai K, Cheng C, Wu Z, Zhao M. Direct thiolation of aza-heteroaromatic N-oxides with disulfides via copper-catalyzed regioselective C–H bond activation. Org Chem Front 2018. [DOI: 10.1039/c8qo00840j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel and efficient thiolation reaction of aza-heteroaromatic N-oxides with disulfides via copper catalyzed C–H activation has been developed.
Collapse
Affiliation(s)
- Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province
- College of Tobacco Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Ke Zhai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province
- College of Tobacco Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Chuance Cheng
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province
- College of Tobacco Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province
- College of Tobacco Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province
- College of Tobacco Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| |
Collapse
|