1
|
Ma SS, Jiang BL, Yu ZK, Zhang SJ, Xu BH. Cobalt-Catalyzed Chemoselective Transfer Hydrogenative Cyclization Cascade of Enone-Tethered Aldehydes. Org Lett 2021; 23:3873-3878. [PMID: 33960792 DOI: 10.1021/acs.orglett.1c00992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ligand-free Co-catalyzed chemoselective reductive cyclization cascade of enone-tethered aldehydes with i-PrOH as the environmentally benign hydrogen surrogate is developed by this study. Mechanistic studies disclosed that such a protocol is initiated by an ortho-enone-assisted Co(I)-catalyzed reduction of the aldehyde functionality with i-PrOH. Meanwhile, the selectivity from the Michael-Aldol cycloreduction cascade to the oxa-Michael cascade is feasible and readily adjusted by the addition of steric Lewis bases, such as TEMPO and DABCO, delivering substituted 1H-indenes and dihydroisobenzofurans, respectively.
Collapse
Affiliation(s)
- Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao-Ling Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheng-Kun Yu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Suo-Jiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Son EC, Kim SY, Kim SG. Squaramide-Catalyzed Asymmetric Intramolecular Oxa-Michael Reaction of α,β-Unsaturated Carbonyls Containing Benzyl Alcohol: Construction of Chiral 1-Substituted Phthalans. J Org Chem 2021; 86:6826-6839. [PMID: 33904749 DOI: 10.1021/acs.joc.1c00715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organocatalytic enantioselective intramolecular oxa-Michael reactions of benzyl alcohol bearing α,β-unsaturated carbonyls as Michael acceptors are presented herein. Using cinchona squaramide-based organocatalyst, enones as well as α,β-unsaturated esters containing benzyl alcohol provided their corresponding 1,3-dihydroisobenzofuranyl-1-methylene ketones and 1,3-dihydroisobenzofuranyl-1-methylene esters in excellent yields with high enantioselectivities. In addition, enantioenriched 1,3-dihydroisobenzofuranyl-1-methylene ketone could be obtained from the Wittig/oxa-Michael reaction cascade of 1,3-dihydro-2-benzofuran-1-ol.
Collapse
Affiliation(s)
- Eun Chae Son
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Seung Yeon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
3
|
Lv XJ, Ming YC, Wu HC, Liu YK. Brønsted acid-catalyzed dynamic kinetic resolution of in situ formed acyclic N,O-hemiaminals: cascade synthesis of chiral cyclic N,O-aminals. Org Chem Front 2021. [DOI: 10.1039/d1qo01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A H2O controlled dynamic kinetic resolution was involved in a Brønsted acid-catalyzed acyclic N,O-hemiaminal formation/oxa-Michael reaction cascade, leading to highly enantioenriched cis-2,6-disubstituted tetrahydropyrans bearing an exo amide group.
Collapse
Affiliation(s)
- Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hui-Chun Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
4
|
Ahmad T, Ullah N. The oxa-Michael reaction in the synthesis of 5- and 6-membered oxygen-containing heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01312a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we provide an updated account on the recent advances and applications of oxa-Michael reaction in the synthesis 5- and 6-membered monocyclic oxygen-containing heterocyclic compounds published in the literature since 2013 to date.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Nisar Ullah
- Chemistry Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
5
|
Tandem nucleophilic addition/oxa-Michael reaction of ortho-formyl chalcones with dimethyl (diazomethyl)phosphonate for the synthesis of phosphine-containing 1,3-disubstituted phthalans. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sun M, Wu H, Wu H, Wang Z. An intramolecular Heck reaction of enol ethers involving β-alkoxyl elimination followed by the β-hydride elimination process: access to (Z)-ortho-formyl/keto-cinnamates. Chem Commun (Camb) 2019; 55:14422-14425. [DOI: 10.1039/c9cc08133j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly regio- and stereoselective intramolecular Heck reaction of enol ethers involving β-alkoxyl elimination followed by the β-hydride elimination process has been developed.
Collapse
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| |
Collapse
|
7
|
Hikawa H, Matsuura Y, Kikkawa S, Azumaya I. Platinum( ii)-catalyzed dehydrative C3-benzylation of electron-deficient indoles with benzyl alcohols. Org Chem Front 2019. [DOI: 10.1039/c9qo00831d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy for the water-promoted direct dehydrative coupling of indoles with benzyl alcohols catalyzed by PtCl2(PhCN)2 in 1,2-dichloroethane has been developed.
Collapse
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences
- Toho University
- Chiba 274-8510
- Japan
| | - Yuuki Matsuura
- Faculty of Pharmaceutical Sciences
- Toho University
- Chiba 274-8510
- Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences
- Toho University
- Chiba 274-8510
- Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences
- Toho University
- Chiba 274-8510
- Japan
| |
Collapse
|