1
|
Kumar S, Dey A, Maiti B, Das S, Pasuparthy SD, Padala K. A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis. Top Curr Chem (Cham) 2024; 382:36. [PMID: 39548041 DOI: 10.1007/s41061-024-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
In the realm of organic synthesis, reagents can serve not only as solvents but also as synthons. Dimethyl sulfoxide (DMSO) is recognized for its efficiency in this dual capacity, enabling diverse chemical transformations. DMSO can generate various synthons, including methyl, methylene, methine, oxygen, and methyl sulfoxide, broadening the accessible compound repertoire. Activation of DMSO as a reagent relies heavily on synergies with secondary agents like peroxide, persulfate, or iodine. Recent years have witnessed a surge in innovative synthetic techniques harnessing the synergistic interplay of DMSO and peroxide, leading to environmentally friendly and cost-effective reactions with mild conditions. This review highlights the synergistic effects of DMSO and peroxides (up to 2023), detailing their activation mechanisms and the generation of various synthons, along with numerous reported derivatives. Although this topic has received considerable attention in recent years, there are numerous discrepancies and a plethora of possibilities yet to be explored. We anticipate that this review will significantly support researchers in advancing their innovations to a greater extent in the future.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India.
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sai Deepak Pasuparthy
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
2
|
Cong F, Zhang W, Zhang G, Liu J, Zhang Y, Zhou C, Wang L. Visible light as a sole requirement for alkylation of α-C(sp 3)-H of N-aryltetrahydroisoquinolines with alkylboronic acids. Org Biomol Chem 2023; 21:8910-8917. [PMID: 37906093 DOI: 10.1039/d3ob01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An alkylation of α-C(sp3)-H at N-aryltetrahydroisoquinolines with alkylboronic acids was developed under visible-light irradiation in the absence of additional photocatalyst. The reaction proceeded well, tolerating a variety of functional groups, and featured low-cost and mild reaction conditions. A preliminary mechanistic study indicated that an electron donor-acceptor (EDA) complex between an electron-rich N-aryltetrahydroisoquinoline and an electron-poor alkylboronic acid was involved in the reaction.
Collapse
Affiliation(s)
- Feihu Cong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wenjing Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
3
|
Jiang YS, Li SS, Luo XL, Chen LN, Chen DN, Xia PJ. Photoinduced Difunctionalization of Diazenes Enabled by N-N Radical Coupling. Org Lett 2023; 25:6671-6676. [PMID: 37642680 DOI: 10.1021/acs.orglett.3c02533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, a metal-free difunctionalization strategy for diazenes was developed using a range of bifunctionalization reagents. This strategy involves a unique N(sp3)-N(sp2) radical coupling between the hydrazine radical and the imine radical. More than 30 triazane core motifs were constructed by installing imines and various functional groups, including alkyl, phenyl, cyanoalkyl, and sulfonyl groups, on both ends of the nitrogen-nitrogen bond of diazenes in an efficient manner.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
4
|
Kumar S, Padala K, Maiti B. H 2O 2-Mediated Synthesis of a Quinazolin-4(3 H)-one Scaffold: A Sustainable Approach. ACS OMEGA 2023; 8:33058-33068. [PMID: 37720769 PMCID: PMC10500651 DOI: 10.1021/acsomega.3c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
A quinazolin-4(3H)-one ring system is a privileged heterocyclic moiety with distinctive biological properties. From this perspective, the development of an efficient strategy for the synthesis of quinazolin-4(3H)-one has always been in demand for the synthetic chemistry community. In this report, we envisaged an efficient protocol for the synthesis of quinazolin-4(3H)-one using substituted 2-amino benzamide with dimethyl sulfoxide (DMSO) as a carbon source and H2O2 as an effective oxidant. Mechanistically, the reaction proceeds through the radical approach with DMSO as one carbon source. To further substantiate the synthetic claim, the synthetic protocol has been extended to the synthesis of the anti-endotoxic active compound 3-(2-carboxyphenyl)-4-(3H)-quinazolinone.
Collapse
Affiliation(s)
- Sumit Kumar
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Kishor Padala
- Department
of Chemistry, Central Tribal University
of Andhra Pradesh, Kondakarakam
Village, Cantonment area, Vizianagaram, Andhra Pradesh 535003, India
| | - Barnali Maiti
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
5
|
Recent Advances in the Use of Dimethyl Sulfoxide as a Synthon in Organic Chemistry. Top Curr Chem (Cham) 2022; 380:55. [DOI: 10.1007/s41061-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
|
6
|
Abstract
Abstract:
Dimethyl sulfoxide (DMSO) is not only a common and cheap aprotic polar solvent with low toxicity, but also serves as an efficient and multipurpose reactant and has widely been used in organic synthesis. DMSO as an important precursor can effectively introducea broad range of functional fragments into organic molecules, such as -Me, -CH, -CH2, -SMe2, -CH2SMe, -CH2SOMe, -SMe, -SO2Me, -SOMe or as O substituents, and serves as a mild oxidant in organic transformations. Many significant achievements based on DMSO as a synthon in synthetic chemistry have rapidly made over the past several years. To help researchers further understand the recent advances in the field, the review summarizes the applications of DMSO as carbon, sulfur, and oxygen sources and is used as the dual synthon in synthetic transformations.
Collapse
Affiliation(s)
- Su-qian CAI
- School of Pharmaceutical Sciences, Guilin Medical University, Guangxi Guilin 541199, P. R. China,
| | - Ke-feng ZHANG
- School of Pharmaceutical Sciences, Guilin Medical University, Guangxi Guilin 541199, P. R. China,
| | - Xiao-hua CAI
- School of Chemical Engineering, Guizhou Minzu University, Guizhou, Guiyang 550025, P. R., China
| |
Collapse
|
7
|
Li C, Zhong Q, Tang S, Wang L, Li P, Li H. Electrochemical formal [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A catalyst-free electrochemical [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines without an external oxidant has been developed for constructing the 1,2,4-triazolidine skeleton.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiang Zhong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Shujun Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
8
|
Dong J, Fu D, Sheng D, Wang J, Xu J. Direct oxidation of N-ynylsulfonamides into N-sulfonyloxoacetamides with DMSO as a nucleophilic oxidant. RSC Adv 2021; 11:40243-40252. [PMID: 35494160 PMCID: PMC9044841 DOI: 10.1039/d1ra04816c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
N-Arylethynylsulfonamides are oxidized into N-sulfonyl-2-aryloxoacetamides directly and efficiently with dimethyl sulfoxide (DMSO) as both an oxidant and solvent with microwave assistance. DFT calculations indicate that DMSO nucleophilically attacks the ethylic triple bond and transfers its oxygen atom to the triple bond to form zwitterionic anionic N-sulfonyliminiums to trigger the reaction. Then it nucleophilically attacks the generated iminium intermediates to accomplish the oxidation via the second oxygen atom transfer. The current method provides a straightforward and efficient strategy to transform various N-arylethynylsulfonamides into N-sulfonyl-2-aryloxoacetamides, sulfonyl oxoacetimides, without any other electrophilic activators or oxidants.
Collapse
Affiliation(s)
- Jun Dong
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
- School of Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224007 People's Republic of China
| | - Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Dongning Sheng
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Jiayi Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| |
Collapse
|
9
|
Liu H, He GC, Zhao CY, Zhang XX, Ji DW, Hu YC, Chen QA. Redox-Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021; 60:24284-24291. [PMID: 34460141 DOI: 10.1002/anie.202109026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Thiophene-based rings are one of the most widely used building blocks for the synthesis of sulfur-containing molecules. Inspired by the redox diversity of these features in nature, we demonstrate herein a redox-divergent construction of dihydrothiophenes, thiophenes, and bromothiophenes from the respective readily available allylic alcohols, dimethyl sulfoxide (DMSO), and HBr. The redox-divergent selectivity could be manipulated mainly by controlling the dosage of DMSO and HBr. Mechanistic studies suggest that DMSO simultaneously acts as an oxidant and a sulfur donor. The synthetic potentials of the products as platform molecules were also demonstrated by various derivatizations, including the preparation of bioactive and functional molecules.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Redox‐Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Fu D, Dong J, Wang J, Xu J. Direct 1,2‐Oxosulfenylation of Acetylenic Sulfones with DMSO. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering Department of Organic Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Dong
- State Key Laboratory of Chemical Resource Engineering Department of Organic Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng 224007 P. R. China
| | - Jiayi Wang
- State Key Laboratory of Chemical Resource Engineering Department of Organic Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering Department of Organic Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
12
|
Luo R, Guo L, Liu W, Wang S. Copper-catalyzed synthesis of phenolic compounds with DMSO as the methylene source. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1902536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Run Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lina Guo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| |
Collapse
|
13
|
Wang A, Liu X, Kong Y, Wang J, Jiang TS. Substrate-induced DMSO activation and subsequent reaction for rapid construction of substituted pyrimidines. Org Chem Front 2021. [DOI: 10.1039/d0qo01416h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free direct synthesis of pyrimidines from amidine hydrochlorides, ketones and DMSO through substrate-induced DMSO activation and involved reactions has been developed.
Collapse
Affiliation(s)
- Anan Wang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- P.R. China
| | - Yi Kong
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Jing Wang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Tao-Shan Jiang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| |
Collapse
|
14
|
Zhang W, Bu J, Wang L, Li P, Li H. Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: an approach toward the carbazole skeleton. Org Chem Front 2021. [DOI: 10.1039/d1qo00739d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A mild sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes has been established for the construction of the carbazole backbone.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Jiahui Bu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
15
|
Yang J, Song M, Zhou H, Wang G, Ma B, Qi Y, Huo C. Visible-Light-Mediated Hydroacylation of Azobenzenes with α-Keto Acids. Org Lett 2020; 22:8407-8412. [DOI: 10.1021/acs.orglett.0c03039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Qi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
16
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
17
|
Fu D, Dong J, Du H, Xu J. Methanesulfinylation of Benzyl Halides with Dimethyl Sulfoxide. J Org Chem 2020; 85:2752-2758. [PMID: 31873024 DOI: 10.1021/acs.joc.9b03041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A phenyltrimethylammonium tribromide-mediated nucleophilic substitution/oxygen transformation reaction of benzyl halides with DMSO has been developed. In this transition-metal-free reaction, DMSO acts as not only a solvent but also a "S(O)Me" source, thus providing a convenient method for the efficient and direct synthesis of various benzyl methyl sulfoxides.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Jun Dong
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Hongguang Du
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| |
Collapse
|
18
|
Park DD, Min KH, Kang J, Hwang HS, Soni VK, Cho CG, Cho EJ. Transforming Oxadiazolines through Nitrene Intermediates by Energy Transfer Catalysis: Access to Sulfoximines and Benzimidazoles. Org Lett 2020; 22:1130-1134. [PMID: 31985235 DOI: 10.1021/acs.orglett.9b04646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subtle differences in reaction conditions facilitated unprecedented photocatalytic reactions of oxadiazolines by energy transfer catalysis. A set of compounds, sulfoximines and benzimidazoles, were ingeniously prepared from oxadiazolines via nitrene intermediates by photocatalytic N-O/C-N bond cleavages. The synthesis of sulfoximines was realized through intermolecular N-S bond formation between nitrene intermediates and sulfoxides, whereas benzimidazoles were obtained via intramolecular aromatic substitution of the nitrene to the tethered aryl substituent.
Collapse
Affiliation(s)
- Do Dam Park
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Kwan Hong Min
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Jihee Kang
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Vineet Kumar Soni
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Cheon-Gyu Cho
- Department of Chemistry , Hanyang University , Seoul 04763 , Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| |
Collapse
|
19
|
Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Dimethyl Sulfoxide: Yesterday's Solvent, Today's Reagent. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901021] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| |
Collapse
|
20
|
Jiang TS, Zhou Y, Dai L, Liu X, Zhang X. Acid-promoted metal-free synthesis of 3-ketoquinolines from amines, enaminones and DMSO. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Zhao P, Wu X, Geng X, Wang C, Zhou Y, Wu YD, Wu AX. I2/PhI(OAc)2 Copromoted Amination Reaction: Synthesis of α-Dicarbonylsulfoximine Derivatives by Incorporating an Intact Dimethyl Sulfoxide. J Org Chem 2019; 84:8322-8329. [DOI: 10.1021/acs.joc.9b01160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xia Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
22
|
Kumar Verma P, Vishwakarma RA, Sawant SD. Reaction Medium as the Installing Reservoir for Key Functionalities in the Molecules. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Praveen Kumar Verma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Ram A. Vishwakarma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Sanghapal D. Sawant
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| |
Collapse
|
23
|
Chen Z, Liu B, Liang P, Luo H, Zheng J, Wen X, Liu T, Luo G, Ye M. Construction of N-S and C-N Bonds from Reactions of Benzofuroxans with DMSO or THF. ACS OMEGA 2019; 4:281-291. [PMID: 31459330 PMCID: PMC6648239 DOI: 10.1021/acsomega.8b03353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 05/06/2023]
Abstract
Novel ring-opening reactions are achieved employing benzofuroxan as a new type of iminating or aminating reagent. These diverse transformations give access to three types of molecular scaffolds, N-aryl dimethylsulfoximines, methanesulfonamides, and hemiaminal ethers, which are important structural motifs in organic and medicinal chemistry. The procedures feature solvent-involved reactions, easily available starting materials, operational simplicity, high atom economy, and the potential further transformation of nitro group.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
- E-mail: (Z.C.)
| | - Botao Liu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Pei Liang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Haiqing Luo
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jing Zheng
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaowei Wen
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Tanggao Liu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guotian Luo
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Min Ye
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
- E-mail: (M.Y.)
| |
Collapse
|
24
|
Ni Y, Zuo H, Yu H, Wu Y, Zhong F. Synergistic Catalysis-Enabled Thia-Aza-Prins Cyclization with DMSO and Disulfides: Entry to Sulfenylated 1,3-Oxazinanes and Oxazolidines. Org Lett 2018; 20:5899-5904. [DOI: 10.1021/acs.orglett.8b02551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yang Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Honghua Zuo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Huaibin Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
25
|
Mulina OM, Ilovaisky AI, Terent'ev AO. Oxidative Coupling with S-N Bond Formation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800838] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 119991 Moscow Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square 125047 Moscow Russian Federation
| |
Collapse
|
26
|
Zhang J, Cheng S, Cai Z, Liu P, Sun P. Radical Addition Cascade Cyclization of 1,6-Enynes with DMSO To Access Methylsulfonylated and Carbonylated Benzofurans under Transition-Metal-Free Conditions. J Org Chem 2018; 83:9344-9352. [DOI: 10.1021/acs.joc.8b01265] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Shijing Cheng
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Zhiqiang Cai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|