1
|
Meena N, Bhawani, Sonam, Rangan K, Kumar A. Ball-Milling-Enabled Zn(OTf) 2-Catalyzed Friedel-Crafts Hydroxyalkylation of Imidazo[1,2- a]pyridines and Indoles. J Org Chem 2023. [PMID: 36787621 DOI: 10.1021/acs.joc.2c02719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A facile and efficient synthetic method for the construction of C3-hydroxyalkylated imidazo[1,2-a]pyridines and indoles by a Zn(OTf)2-catalyzed Friedel-Crafts hydroxyalkylation of imidazo[1,2-a]pyridines and indoles with carbonyl compounds under mechanochemical conditions is reported. Good product selectivity, shorter reaction time, ambient reaction temperature, tolerance of a wide range of functional groups, broad substrate scope, moderate to good yield of products, and scalability are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
2
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
3
|
Solvent-free mechanochemical multicomponent preparation of 4H-pyrans catalyzed by Cu 2(NH 2-BDC) 2(DABCO) metal-organic framework. Heliyon 2023; 9:e13522. [PMID: 36852068 PMCID: PMC9958292 DOI: 10.1016/j.heliyon.2023.e13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
4H-pyrans have been prepared through a mechanochemical multicomponent reaction (MCR) of different aldehydes, malononitrile, and various 1,3-dicarbonyl compounds, catalyzed by an amine-functionalized metal-organic framework (MOF) Cu2(NH2-BDC)2(DABCO) as a heterogeneous catalyst with good to excellent yields.
Collapse
|
4
|
Ti L, Sheng X, Jia H, Han W, Ping Q, Yang J, Li N. Process integration of KOH/diatomite preparation and cyclopentanone self-condensation via ball-milling method. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Yadav SK, Jeganmohan M. Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Substituted Alkenes. J Org Chem 2022; 87:13073-13088. [PMID: 36163013 DOI: 10.1021/acs.joc.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Co(III)-catalyzed redox-neutral [4 + 2] annulation of N-chlorobenzamides/acrylamides with substituted alkenes at ambient temperature is demonstrated. Using this protocol, pharmaceutically important 3,4-dihydroisoquinolinone derivatives were synthesized in good yields. Intriguingly, the synthetically useful functional group of allylic coupling partners such as sulfonyl, carbonate, acetate, phosphate, amide, nitrile, and silane were retained in the final cyclized product. The present annulation reaction was compatible with various substituted benzamides and allylic coupling partners. To support the proposed reaction mechanism, competition experiments, deuterium labeling studies, and kinetic isotope effect studies were performed.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Zhu C, Lee S, Chen H, Yue H, Rueping M. Reductive Cross‐Coupling of α‐Oxy Halides Enabled by Thermal Catalysis, Photocatalysis, Electrocatalysis, or Mechanochemistry. Angew Chem Int Ed Engl 2022; 61:e202204212. [DOI: 10.1002/anie.202204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
7
|
Song JL, Chen SY, Xiao L, Xie XL, Zheng YC, Shang-Shi Z, Shu B. Rh(III)‐Catalyzed N‐Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of N‐Aryl Amides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia-Lin Song
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Shao-Yong Chen
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Xiao-Ling Xie
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Yi-Chuan Zheng
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Zhang Shang-Shi
- Guangdong Pharmaceutical University Center for Drug Research and development Higher Education Mega Center 510006 GuangZhou CHINA
| | - Bing Shu
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| |
Collapse
|
8
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
9
|
Zhu C, Lee S, Chen H, Yue H, Rueping M. Reductive Cross‐Coupling of α‐Oxy Halides Enabled by Thermal Catalysis, Photocatalysis, Electrocatalysis, or Mechanochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
10
|
Barišić D, Pajić M, Halasz I, Babić D, Ćurić M. Mechanochemical halogenation of unsymmetrically substituted azobenzenes. Beilstein J Org Chem 2022; 18:680-687. [PMID: 35821698 PMCID: PMC9235908 DOI: 10.3762/bjoc.18.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022] Open
Abstract
The direct and selective mechanochemical halogenation of C–H bonds in unsymmetrically substituted azobenzenes using N-halosuccinimides as the halogen source under neat grinding or liquid-assisted grinding conditions in a ball mill has been described. Depending on the azobenzene substrate used, halogenation of the C–H bonds occurs in the absence or only in the presence of PdII catalysts. Insight into the reaction dynamics and characterization of the products was achieved by in situ Raman and ex situ NMR spectroscopy and PXRD analysis. A strong influence of the different 4,4’-substituents of azobenzene on the halogenation time and mechanism was found.
Collapse
Affiliation(s)
- Dajana Barišić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Mario Pajić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Ivan Halasz
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Darko Babić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Manda Ćurić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|
11
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
12
|
Min S, Park B, Nedsaengtip J, Hyeok Hong S. Mechanochemical Direct Fluorination of Unactivated C(
sp
3
)−H Bonds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sehye Min
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Beomsoon Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jantakan Nedsaengtip
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
13
|
Barišić D, Halasz I, Bjelopetrović A, Babić D, Ćurić M. Mechanistic Study of the Mechanochemical Pd II-Catalyzed Bromination of Aromatic C–H Bonds by Experimental and Computational Methods. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dajana Barišić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Ivan Halasz
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Alen Bjelopetrović
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Darko Babić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Manda Ćurić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
14
|
Ardila-Fierro KJ, Rubčić M, Hernández JG. Cocrystal Formation Precedes the Mechanochemically Acetate-Assisted C-H Activation with [Cp*RhCl 2 ] 2. Chemistry 2022; 28:e202200737. [PMID: 35274769 DOI: 10.1002/chem.202200737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/16/2022]
Abstract
This work reports the experimentally studied mechanochemical formation of rhodacycles by ball milling pyridine- and quinoline-derived substrates and [Cp*RhCl2 ]2 in the presence of NaOAc. Ex-situ analysis of the mechanochemical reactions using powder X-ray diffraction (PXRD), solid-state UV-vis spectroscopy and ATR-FTIR spectroscopy revealed the formation of unexpected cocrystals between the substrates and the rhodium dimer prior to the C-H activation step. This sequence of events differs from the generally accepted steps in solution in which cleavage of [Cp*RhCl2 ]2 is initiated by acetate ions. Additionally, the mechanochemical approach enabled the synthesis of the six-membered rhodacycle [Cp*Rh(2-benzilpyridine)Cl], a metal complex repeatedly reported as inaccessible in solution. Altogether, the results of this investigation clarify some of the fundamental aspects of mechanochemical cyclometallations.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.,Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
15
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
16
|
García-Oliva C, Merchán A, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Development of sustainable synthesis of glucuronic acid glycodendrimers using ball milling and microwave-assisted CuAAC reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two green strategies for CuAAC reaction based on two activation pathways, solvent free mechanochemistry and microwave irradiation using a recycable biosolvent, are reported for the synthesis of glucuronic acid glycodendrimers with good conversión.
Collapse
Affiliation(s)
- Cecilia García-Oliva
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alejandro Merchán
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Almudena Perona
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pilar Hoyos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ángel Rumbero
- Department in organic chemistry, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - María J. Hernáiz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Tang JJ, Yu X, Yamamoto Y, Bao M. Visible-Light-Promoted Iron-Catalyzed N-Arylation of Dioxazolones with Arylboronic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing-Jing Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
18
|
|
19
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
20
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
21
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
22
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
23
|
Sheng Y, Zhou J, Gao Y, Duan B, Wang Y, Samorodov A, Liang G, Zhao Q, Song Z. Ruthenium(II)-Catalyzed Direct C7-Selective Amidation of Indoles with Dioxazolones at Room Temperature. J Org Chem 2021; 86:2827-2839. [DOI: 10.1021/acs.joc.0c02779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yaoguang Sheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianmin Zhou
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Gao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Bingbing Duan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | | | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
24
|
Feng YL, Shi BF. Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Zhou K, Mao Y, Wu F, Lou S, Xu D. Recent Advances in C—H Bond Functionalization under Mechanochemical Conditions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent‐Free Catalytic C−H Methylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Matic Hribersek
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Swarna K. Baddigam
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Andreas Orthaber
- Department of Chemistry—Ångström Laboratories Uppsala University Box 523 75120 Uppsala Sweden
| | - Paul J. Gates
- School of Chemistry University of Bristol Cantock's Close, Clifton Bristol BS8 1TS UK
| | - Lukasz T. Pilarski
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
27
|
|
28
|
Lukin S, Stolar T, Lončarić I, Milanović I, Biliškov N, di Michiel M, Friščić T, Halasz I. Mechanochemical Metathesis between AgNO 3 and NaX (X = Cl, Br, I) and Ag 2XNO 3 Double-Salt Formation. Inorg Chem 2020; 59:12200-12208. [PMID: 32806016 DOI: 10.1021/acs.inorgchem.0c01196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe real-time, in situ monitoring of mechanochemical solid-state metathesis between silver nitrate and the entire series of sodium halides, on the basis of tandem powder X-ray diffraction and Raman spectroscopy monitoring. The mechanistic monitoring reveals that reactions of AgNO3 with NaX (X = Cl, Br, I) differ in reaction paths, with only the reaction with NaBr providing the NaNO3 and AgX products directly. The reaction with NaI revealed the presence of a novel, short-lived intermediate phase, while the reaction with NaCl progressed the slowest through the well-defined Ag2ClNO3 intermediate double salt. While the corresponding iodide and bromide double salts were not observed as intermediates, all three are readily prepared as pure compounds by milling equimolar mixtures of AgX and AgNO3. The in situ observation of reactive intermediates in these simple metathesis reactions reveals a surprising resemblance of reactions involving purely ionic components to those of molecular organic solids and cocrystals. This study demonstrates the potential of in situ reaction monitoring for mechanochemical reactions of ionic compounds as well as completes the application of these techniques to all major compound classes.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Tomislav Stolar
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Igor Milanović
- Department of Physics (010), Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia
| | - Nikola Biliškov
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marco di Michiel
- ESRF-the European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
30
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
31
|
van Vliet KM, de Bruin B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaj M. van Vliet
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
De PB, Atta S, Pradhan S, Banerjee S, Shah TA, Punniyamurthy T. Cp*Co(III)-Catalyzed C-7 C-C Coupling of Indolines with Aziridines: Merging C-H Activation and Ring Opening. J Org Chem 2020; 85:4785-4794. [PMID: 32154719 DOI: 10.1021/acs.joc.0c00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Cp*Co(III)-catalyzed directing group-assisted C7 C-C coupling of indolines with aziridines has been developed by merging C-H activation and ring opening. The use of cobalt catalyst, detection of a Co(III) intermediate, and late-stage removal of the directing group are important practical features.
Collapse
Affiliation(s)
- Pinaki Bhusan De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sayan Atta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sourav Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tariq A Shah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
33
|
Kong X, Xu B. OrthoC H amidations enabled by a recyclable manganese-ionic liquid catalytic system. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Shi X, Xu W, Wang R, Zeng X, Qiu H, Wang M. Ketone-Directed Cobalt(III)-Catalyzed Regioselective C2 Amidation of Indoles. J Org Chem 2020; 85:3911-3920. [DOI: 10.1021/acs.joc.9b03018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinxia Shi
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weiyan Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Rongchao Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Min Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| |
Collapse
|
35
|
Yu J, Yang X, Wu C, Su W. Palladium-Catalyzed C–H/C–H Cross-Coupling by Mechanochemistry: Direct Alkenylation and Heteroarylation of N1-Protected 1H-Indazoles. J Org Chem 2019; 85:1009-1021. [DOI: 10.1021/acs.joc.9b02951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xinjie Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chongyang Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
36
|
Shah TA, De PB, Pradhan S, Banerjee S, Punniyamurthy T. Cp*Co(III)-Catalyzed Regioselective C2 Amidation of Indoles Using Acyl Azides. J Org Chem 2019; 84:16278-16285. [PMID: 31771331 DOI: 10.1021/acs.joc.9b02244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A cobalt-catalyzed C2-selective amidation of indoles using acyl azides has been accomplished. Isotope experiments suggest that C-H activation is reversible. The use of sustainable Co catalysis, functional group diversity, substrate scope, and regioselectivity are the important practical features.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Pinaki Bhusan De
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Sourav Pradhan
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Sonbidya Banerjee
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | | |
Collapse
|
37
|
Staleva P, Hernández JG, Bolm C. Mechanochemical Copper-Catalyzed Asymmetric Michael-Type Friedel-Crafts Alkylation of Indoles with Arylidene Malonates. Chemistry 2019; 25:9202-9205. [PMID: 31106927 DOI: 10.1002/chem.201901826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Indexed: 12/12/2022]
Abstract
A mechanochemical version of the asymmetric Michael-type Friedel-Crafts alkylation of indoles with arylidene malonates was developed. The reaction proceeds under ambient atmosphere using a chiral bis(oxazoline)copper catalyst in a mixer mill. Under these reaction conditions nineteen 3-substituted indole derivatives were synthesized in good to excellent yields (up to 98 %), and with good enantioselectivities (up to 91:9 e.r.) after short milling times.
Collapse
Affiliation(s)
- Plamena Staleva
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
38
|
Pang Y, Ishiyama T, Kubota K, Ito H. Iridium(I)‐Catalyzed C−H Borylation in Air by Using Mechanochemistry. Chemistry 2019; 25:4654-4659. [DOI: 10.1002/chem.201900685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yadong Pang
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tatsuo Ishiyama
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
39
|
Huang DY, Yao QJ, Zhang S, Xu XT, Zhang K, Shi BF. Amide-Directed Cobalt(III)-Catalyzed C–H Amidation of Ferrocenes. Org Lett 2019; 21:951-954. [DOI: 10.1021/acs.orglett.8b03938] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dan-Ying Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Bolm C, Hernández JG. Mechanochemistry of Gaseous Reactants. Angew Chem Int Ed Engl 2019; 58:3285-3299. [DOI: 10.1002/anie.201810902] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
41
|
Affiliation(s)
- Carsten Bolm
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - José G. Hernández
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
42
|
Yang J, Hu X, Liu Z, Li X, Dong Y, Liu G. Cp*CoIII-catalyzed formal [4+2] cycloaddition of benzamides to afford quinazolinone derivatives. Chem Commun (Camb) 2019; 55:13840-13843. [DOI: 10.1039/c9cc07173c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Cp*CoIII-catalyzed arene C–H bond amidation/annulation of benzamides was developed to afford quinazolinone derivatives in one-pot with high yields and broad substrate scope.
Collapse
Affiliation(s)
- Jingshu Yang
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Xiao Hu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Zijie Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Xueyuan Li
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Gang Liu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
43
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1481] [Impact Index Per Article: 211.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
44
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018; 57:16104-16108. [PMID: 30335216 PMCID: PMC6282732 DOI: 10.1002/anie.201810141] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 11/06/2022]
Abstract
A reaction manifold has been discovered in which the chemoselectivity can be altered by switching between neat milling and liquid assisted grinding (LAG) with polar additives. After investigation of the reaction mechanism, it has been established that this switching in reaction pathway is due to the neat mechanochemical conditions exhibiting different kinetics for a key step in the transformation. This proof of concept study demonstrates that mechanochemistry can be used to trap the kinetic product of a reaction. It is envisaged that, if this concept can be successfully applied to other transformations, novel synthetic processes could be discovered and known reaction pathways perturbed or diverted.
Collapse
Affiliation(s)
- Joseph L Howard
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Michael C Brand
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Duncan L Browne
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| |
Collapse
|
45
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph L. Howard
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Michael C. Brand
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Duncan L. Browne
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| |
Collapse
|
46
|
Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW. Catalytic Transformations of Functionalized Cyclic Organic Carbonates. Angew Chem Int Ed Engl 2018; 57:13735-13747. [DOI: 10.1002/anie.201805009] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Wusheng Guo
- Center for Organic ChemistryFrontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710045 China
| | - José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Jianing Xie
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
47
|
Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW. Katalytische Umwandlung von funktionalisierten cyclischen organischen Carbonaten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wusheng Guo
- Center for Organic ChemistryFrontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710045 China
| | - José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spanien
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spanien
| | - Jianing Xie
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spanien
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spanien
| |
Collapse
|
48
|
Hermann GN, Unruh MT, Jung S, Krings M, Bolm C. Mechanochemical Rhodium(III)‐ and Gold(I)‐Catalyzed C−H Bond Alkynylations of Indoles under Solventless Conditions in Mixer Mills. Angew Chem Int Ed Engl 2018; 57:10723-10727. [DOI: 10.1002/anie.201805778] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gary N. Hermann
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin T. Unruh
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Se‐Hyeong Jung
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Maik Krings
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
49
|
Hermann GN, Unruh MT, Jung S, Krings M, Bolm C. Mechanochemical Rhodium(III)‐ and Gold(I)‐Catalyzed C−H Bond Alkynylations of Indoles under Solventless Conditions in Mixer Mills. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805778] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gary N. Hermann
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin T. Unruh
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Se‐Hyeong Jung
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Maik Krings
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
50
|
Schumacher C, Crawford DE, RaguŽ B, Glaum R, James SL, Bolm C, Hernández JG. Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst. Chem Commun (Camb) 2018; 54:8355-8358. [PMID: 29993055 DOI: 10.1039/c8cc04487b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mechanochemistry enabled the selective synthesis of the recherché orange polymorph of Wilkinson's catalyst [RhCl(PPh3)3]. The mechanochemically prepared Rh-complex catalysed the solvent-free dehydrogenation of Me2NH·BH3 in a ball mill. The in situ-generated hydrogen (H2) could be utilised for Rh-catalysed hydrogenation reactions by ball milling.
Collapse
Affiliation(s)
- Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany.
| | | | | | | | | | | | | |
Collapse
|