1
|
Ghosh S, Pyne P, Ghosh A, Choudhury S, Hajra A. Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Org Biomol Chem 2023; 21:1591-1628. [PMID: 36723242 DOI: 10.1039/d2ob02062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential. The development of photocascade catalysis for a target molecule with a particular molecular skeleton and stereochemical framework presents certain challenges but provides a robust and environmentally benign synthetic alternative. This comprehensive review assembles all the accomplishments and highlights of visible-light-induced cascade reactions with literature coverage up to October 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Swagata Choudhury
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| |
Collapse
|
2
|
Zhang Z, Chen Y, He L, Xie L, Chen Z. Regioselective Synthesis of Indole-Fused Seven-Membered N-Heterocycles via Photoredox-Catalyzed Intramolecular Cyclization. J Org Chem 2022; 87:14394-14406. [PMID: 36206145 DOI: 10.1021/acs.joc.2c01829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we describe the construction of indole-fused seven-membered N- and O-heterocycles from indolyl α-diazocarbonyls via photoredox-catalyzed intramolecular cyclization. The photoredox process features operational simplicity, mild conditions, and as low as 0.1 mol % catalyst loading. The tricyclic heterocycles are obtained in yields of 24 to 67% with excellent regioselectivity. The practicality of this protocol is further demonstrated by gram-scale reactions carried out in both batch and continuous flow.
Collapse
Affiliation(s)
- Ziqin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yifeng Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Linrong He
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lihua Xie
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhitao Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
3
|
Sun B, Zhuang X, Yin J, Zhang K, Zhao H, Jin C. Photoredox-Catalyzed Tandem Radical Cyclization/Hydroxylation for the Synthesis of 4-Hydroxyalkyl-3,3-difluoro-γ-lactams. J Org Chem 2022; 87:14177-14185. [PMID: 36173277 DOI: 10.1021/acs.joc.2c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The photoredox-catalyzed radical difluoroalkylation/cyclization/hydroxylation cascade reaction of various 2-bromo-2,2-difluoro-N-arylacetamides containing unactivated alkene moieties has been developed, providing green and efficient access to various 4-hydroxyalkyl-3,3-difluoro-γ-lactams. Control experiments confirmed a radical process, and inexpensive air acted as the sole hydroxy resource. In addition, the highlights of this protocol include good tolerance for a variety functional groups, lower photocatalyst loading, and ease of operation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jieli Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haiyun Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
4
|
Development of TfOH‐Catalyzed Spirocyclization by Intramolecular Friedel‐Crafts‐type 1,4‐Addition: Application to the Total Synthesis of the Unusual Proaporphine Alkaloid (±)‐Misrametine. Chemistry 2022; 28:e202202188. [DOI: 10.1002/chem.202202188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/07/2022]
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Zhou C, Shatskiy A, Temerdashev AZ, Kärkäs MD, Dinér P. Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade. Commun Chem 2022; 5:92. [PMID: 36697909 PMCID: PMC9814605 DOI: 10.1038/s42004-022-00706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023] Open
Abstract
Photo-mediated radical dearomatization involving 5-exo-trig cyclizations has proven to be an important route to accessing spirocyclic compounds, whereas 6-exo-trig spirocyclization has been much less explored. In this work, a dearomative annulation cascade is realized through photoredox-mediated C-O bond activation of aromatic carboxylic acids to produce two kinds of spirocyclic frameworks. Mechanistically, the acyl radical is formed through oxidation of triphenylphosphine and subsequent C-O bond cleavage, followed by a 6-exo-trig cyclization/SET/protonation sequence to generate the spiro-chromanone products in an intramolecular manner. Furthermore, the protocol was extended to more challenging intermolecular tandem sequences consisting of C-O bond cleavage, radical addition to an alkene substrate, and 5-exo-trig cyclization to yield complex spirocyclic lactams.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Andrey Shatskiy
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropolskaya St. 149, 350040, Krasnodar, Russia
| | - Markus D Kärkäs
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden.
| |
Collapse
|
7
|
Mo K, Zhou X, Wu J, Zhao Y. Electrochemical Dearomatization of Indoles: Access to Diversified Fluorine-Containing Spirocyclic Indolines. Org Lett 2022; 24:2788-2792. [DOI: 10.1021/acs.orglett.2c00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
9
|
Zhuang X, Ling L, Wang Y, Li B, Sun B, Su W, Jin C. Photoinduced Cascade C-N/C═O Bond Formation from Bromodifluoroalkyl Reagents, Amines, and H 2O via a Triple-Cleavage Process. Org Lett 2022; 24:1668-1672. [PMID: 35191309 DOI: 10.1021/acs.orglett.2c00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A green, sustainable, and straightforward method for the synthesis of unsymmetrical oxalamides via photoinduced C-N/C═O bond formation of bromodifluoroacetamide, amine, and H2O through a triple-cleavage process has been developed. In addition, this approach also provides access to the known bioactive compounds, and a feasible reaction mechanism is proposed. Moreover, the advantages of this transformation, including mild reaction conditions, a broad substrate scope, and operational simplicity, make this protocol attractive for further applications.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lan Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingqian Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
10
|
Studies on the biological activity of gem-difluorinated 3,3′-spirocyclic indole derivatives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ueda J, Harada S, Kobayashi M, Yanagawa M, Nemoto T. Maleic Acid/Thiourea‐Catalyzed Dearomative
ipso
‐Friedel–Crafts Reaction of Indoles to Produce Functionalized Spiroindolenines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mai Yanagawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research Center Chiba University 1-33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
12
|
Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Org Lett 2021; 23:1862-1867. [DOI: 10.1021/acs.orglett.1c00268] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
13
|
Zhang Y, Ji P, Gao F, Huang H, Zeng F, Wang W. Photoredox Asymmetric Nucleophilic Dearomatization of Indoles with Neutral Radicals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yueteng Zhang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-0001, United States
| | - Fanxun Zeng
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Zhuang W, Cheng YZ, Huang XL, Huang Q, Zhang X. Visible-light induced divergent dearomatization of indole derivatives: controlled access to cyclobutane-fused polycycles and 2-substituted indolines. Org Chem Front 2021. [DOI: 10.1039/d0qo01322f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A visible-light-induced catalytic, divergent dearomative functionalization of indole derivatives is achieved, thereby leading to the formation of cyclobutane-fused polycycles and 2-substituted indolines in a controllable fashion.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Key Laboratory of Polymer Science
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xu-Lun Huang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Science
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Science
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
| |
Collapse
|
15
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
16
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
17
|
Zhuang X, Shi X, Zhu R, Sun B, Su W, Jin C. Photocatalytic intramolecular radical cyclization involved synergistic SET and HAT: synthesis of 3,3-difluoro-γ-lactams. Org Chem Front 2021. [DOI: 10.1039/d0qo01188f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiayue Shi
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Rui Zhu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - WeiKe Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
18
|
Sun B, Zhu R, Zhuang X, Shi X, Huang P, Yan Z, Yu C, Jin C. Visible Light/Tertiary Amine Promoted Synergistic Hydroxydifluoroacetamidation of Unactivated Alkenes under Air. Org Lett 2020; 23:617-622. [DOI: 10.1021/acs.orglett.0c04216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhiyang Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
19
|
Wang X, Lei J, Li G, Meng J, Li C, Li J, Sun K. Synthetic methods for compounds containing fluoro-lactam units. Org Biomol Chem 2020; 18:9762-9774. [PMID: 33237116 DOI: 10.1039/d0ob02168g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In recent years, considerable attention has been devoted to the exploration of novel synthetic methods for fluoro-lactams due to their significant biological and pharmaceutical activities. This review summarizes recently established strategies for synthesizing fluorine-substituted lactams, including fluoro-β-lactams, fluoro-γ-lactams, and fluoro-δ-lactams. Additionally, the reaction scopes, limitations, and mechanisms are discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, Shandong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Huang XL, Cheng YZ, Zhang X, You SL. Photoredox-Catalyzed Intermolecular Hydroalkylative Dearomatization of Electron-Deficient Indole Derivatives. Org Lett 2020; 22:9699-9705. [DOI: 10.1021/acs.orglett.0c03759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu-Lun Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Lu, Fuzhou 350007, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
21
|
Zhang J, Xu W, Qu Y, Liu Y, Li Y, Song H, Wang Q. Visible-light-induced radical isocyanide insertion protocol for the synthesis of difluoromethylated spiro[indole-3,3'-quinoline] derivatives. Chem Commun (Camb) 2020; 56:15212-15215. [PMID: 33227101 DOI: 10.1039/d0cc06645a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report the first protocol for visible-light-induced radical isocyanide insertion reactions between 3-(2-isocyanobenzyl)-indoles and bromodifluoroacetates or bromodifluoroacetamides. The protocol, which has good functional group tolerance and a broad substrate scope, constitutes an efficient and general route to difluoromethylated spiro[indole-3,3'-quinoline] derivatives.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gao X, Yuan Y, Xie X, Zhang Z. Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chem Commun (Camb) 2020; 56:14047-14050. [PMID: 33103670 DOI: 10.1039/d0cc05672c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A visible-light-initiated intermolecular dearomatization cyclization cascade reaction between alkynes and indole-derived bromides has been explored. This transformation exhibits a wide substrate scope and significant functional group tolerance, providing an efficient way to access a variety of spiroindolenines under mild conditions.
Collapse
Affiliation(s)
- Xiaoshuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | |
Collapse
|
23
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
24
|
Zhu M, Zhang X, Zheng C, You SL. Visible-Light-Induced Dearomatization via [2+2] Cycloaddition or 1,5-Hydrogen Atom Transfer: Divergent Reaction Pathways of Transient Diradicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03808] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Lu, Fuzhou 350007, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
25
|
Takeuchi H, Inuki S, Nakagawa K, Kawabe T, Ichimura A, Oishi S, Ohno H. Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical ipso-Cyclization. Angew Chem Int Ed Engl 2020; 59:21210-21215. [PMID: 32770565 DOI: 10.1002/anie.202009399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/13/2022]
Abstract
We report herein a nonbiomimetic strategy for the total synthesis of the plicamine-type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso-cyclization using visible-light-mediated photoredox catalysis. This cyclization enabled the construction of a 6,6-spirocyclic core structure through the addition of a carbon-centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS-induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine-type alkaloids as well as providing useful intermediates for their syntheses.
Collapse
Affiliation(s)
- Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Takeuchi H, Inuki S, Nakagawa K, Kawabe T, Ichimura A, Oishi S, Ohno H. Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical
ipso
‐Cyclization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
27
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
28
|
Abstract
The dearomatization of aromatic compounds is an important synthetic strategy used in accessing complex three-dimensional structures from simple aromatic precursors. This minireview aims to provide an overview of recent advancements in this area, with a specific focus on visible-light-mediated dearomative transformations. Compared to the conventional high-energy ultraviolet (UV) light-promoted processes, not only these new approaches offer milder reaction conditions to accommodate wider variety of substrates with sensitive functionalities, but also enable the use of photocatalysts and other promoters, significantly expanding the reaction space. Application of these transformations to the synthesis of bioactive compounds are also discussed.
Collapse
Affiliation(s)
- Mikiko Okumura
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
29
|
Wang Q, Qu Y, Liu Y, Song H, Wang Q. Synthesis of Functionalized Spirocyclic Indolines by Visible Light‐Induced One‐Pot Sequential Difluoromethylative Dearomatization, Hydroxylation, and Substitution Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Yi Qu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| |
Collapse
|
30
|
Festa AA, Voskressensky LG, Van der Eycken EV. Visible light-mediated chemistry of indoles and related heterocycles. Chem Soc Rev 2019; 48:4401-4423. [DOI: 10.1039/c8cs00790j] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impact of visible light-promoted chemistry on the functionalization of indoles and related heterocycles is reviewed.
Collapse
Affiliation(s)
- Alexey A. Festa
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
| | | | - Erik V. Van der Eycken
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
| |
Collapse
|