1
|
Rao K, Sharma A, Rathod GK, Barahdia AS, Jain R. Aminocarbonylation using CO surrogates. Org Biomol Chem 2024. [PMID: 39666374 DOI: 10.1039/d4ob01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aminocarbonylation reactions play a critical role in the synthesis of amides. Traditional aminocarbonylation processes often rely on carbon monoxide (CO) gas, a highly toxic and challenging reagent to handle. Recent advancements in CO surrogates address these challenges. This review looks at the various CO substitutes used in aminocarbonylation reactions. These include metal carbonyls, acids, formates, chloroform, and others that release CO. Use of CO surrogates not only improves safety but also broadens the substrate scope and operational simplicity of the aminocarbonylation reactions. This review provides a summary of recent progress made in aminocarbonylation reactions using different CO surrogates. We discuss key methodologies, catalytic systems, and mechanistic insights, highlighting the efficiency and versatility of CO surrogates in amide bond formation.
Collapse
Affiliation(s)
- Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Aman S Barahdia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
2
|
Halder P, Mondal K, Jash A, Das P. Exploiting Chloroform-COware Chemistry for Pd-Catalyzed Carbonylation of Naturally Occurring and Medicinally Relevant Phenols. J Org Chem 2024; 89:9275-9286. [PMID: 38898803 DOI: 10.1021/acs.joc.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this study, a ligand-free palladium-catalyzed carbonylation of phenols is conducted under ambient conditions, utilizing the "Chloroform-COware" chemistry. The developed methodology enables the conversion of diverse medicinally relevant phenols, encompassing both natural and synthetic derivatives, into their respective aryl ester counterparts. This transformation is achieved through the reaction with a broad spectrum of aryl and heteroaryl iodides. The protocol is characterized by its simplicity, generality, and wide substrate scope, delivering bioactive aryl ester derivatives in good to excellent yields. A direct comparison with the one-pot approach, resulting in poor yields of aryl esters, highlights the superior efficiency of the two-chamber setup (COware). Moreover, we successfully applied this two-chamber technique for gram-scale synthesis and postmodification of the synthesized ester to a pharmaceutically important benzocoumarin core.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Arijit Jash
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
3
|
Huang J, Guo W, Wu W, Yin F, Wang H, Tao C, Zhou H, Hu W. Palladium-Catalyzed Dual C-H Carbonylation of Diarylamines Leading to Diversified Acridones under CO-Free Conditions. J Org Chem 2024; 89:2014-2023. [PMID: 38241168 DOI: 10.1021/acs.joc.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A Pd-catalyzed dual C-H carbonylation of commercially available diarylamines using Co2(CO)8 as a safe CO source has been developed. This methodology provides a facile approach for the synthesis of diversified acridones in moderate to good yields. The protocol features good functional group compatibility, operational safety, easy scale-up, and versatile transformations.
Collapse
Affiliation(s)
- Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Wu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huiyan Wang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Hualan Zhou
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| |
Collapse
|
4
|
Sheetal, Chauhan AS, Sharma AK, Sharma N, Giri K, Das P. Pd/C-Catalyzed Carbonylative Amidation for the Synthesis of 2-Carboxamidocyclohexane-1,3-diones. Org Lett 2023; 25:8188-8193. [PMID: 37796466 DOI: 10.1021/acs.orglett.3c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Herein, a first-ever heterogeneous Pd/C-catalyzed single-step tandem approach for the synthesis of 2-carboxamidocyclohexane-1,3-diones via direct carbonylative C-H amidation of cyclohexane-1,3-diones is reported. The reaction progressed under base-, oxidant-, and ligand-free conditions employing oxalic acid as a CO surrogate and sodium azide as a nitrogen precursor in a double-layer vial system.
Collapse
Affiliation(s)
- Sheetal
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Singh Chauhan
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Navneet Sharma
- Department of Computational Sciences, Central University of Punjab, Bathinda 15140, India
| | - Kousik Giri
- Department of Computational Sciences, Central University of Punjab, Bathinda 15140, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Liu Y, Li Z, Yang L, Li S, Chen Z. Photochemically induced chloromethylation/cyclization of benzimidazole derivatives with CCl 4/CHCl 3. Org Biomol Chem 2023; 21:8690-8694. [PMID: 37861680 DOI: 10.1039/d3ob01290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Herein, it is reported that a series of trichloromethyl/dichloromethyl substituted benzimidazole derivatives have been synthesized by dechlorination of CCl4/CHCl3 to form polychloromethyl radicals and cyclization with an unactivated olefin under a purple LED lamp. The protocol features a wide substrate scope, high atom economy, and excellent regioselectivity, and is easy to scale up.
Collapse
Affiliation(s)
- Yanmin Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Ziwei Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Luyao Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Shuo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| |
Collapse
|
6
|
Halder P, Iqubal A, Mondal K, Mukhopadhyay N, Das P. Carbonylative Transformations Using a DMAP-Based Pd-Catalyst through Ex Situ CO Generation. J Org Chem 2023; 88:15218-15236. [PMID: 37874889 DOI: 10.1021/acs.joc.3c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A phosphine-free, efficient protocol for aminocarbonylation and carbonylative Suzuki-Miyaura coupling has been developed using a novel palladium complex, [PdII(DMAP)2(OAc)2]. The complex was successfully synthesized using a stoichiometric reaction between PdII(OAc)2 and DMAP in acetone at room temperature and characterized using single-crystal X-ray analysis. Only 5 mol % catalyst loading was sufficient for effective carbonylative transformations. "Chloroform-COware" chemistry was utilized for safe and facile insertion of the carbonyl unit using chloroform as an inexpensive CO source in a two-chamber setup. Various value-added pharmaceutically relevant compounds such as CX-516, CX-546, and farampator were synthesized using the technique. Furthermore, the commercially designed COware was engineered to COware-RB setup for sequential one-pot synthesis of indenoisoquinolines (topoisomerase I inhibitors).
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Narottam Mukhopadhyay
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
7
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
8
|
Diformylphloroglucinol derived imine based covalent organic frameworks (PHTA) as efficient organocatalyst for conversion of isocyanates to urea derivatives. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kasatkina SO, Geyl KK, Baykov SV, Novikov MS, Boyarskiy VP. “Urea to Urea” Approach: Access to Unsymmetrical Ureas Bearing Pyridyl Substituents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Svetlana O. Kasatkina
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg 199034 Russian Federatio
| | - Kirill K. Geyl
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg 199034 Russian Federatio
| | - Sergey V. Baykov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg 199034 Russian Federatio
| | - Mikhail S. Novikov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg 199034 Russian Federatio
| | - Vadim P. Boyarskiy
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg 199034 Russian Federatio
| |
Collapse
|
10
|
Yang J, Chen L, Dong Y, Zhang J, Wu Y. Di-tert-butyl peroxide (DTBP)-mediated synthesis of symmetrical N,N′-disubstituted urea/thiourea motifs from isothiocyanates in water. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jinchen Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Ling Chen
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Yibo Dong
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Jinli Zhang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| |
Collapse
|
11
|
Karimi F, Shariatipour M, Heydari A. Deep Eutectic Solvent Mediated Carbonylation of Amines and Alcohols by Using Dimethyl Carbonate: Selective Symmetrical Urea and Organic Carbonate Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Farzaneh Karimi
- Chemistry Department Tarbiat Modares University Tehran Iran E-mail: heydar
| | | | - Akbar Heydari
- Chemistry Department Tarbiat Modares University Tehran Iran E-mail: heydar
| |
Collapse
|
12
|
Sheetal, Sharma AK, Shaifali, Bhattacherjee D, Sharma N, Giri K, Das P. Supported-Pd catalyzed tandem approach for N-arylbenzamides synthesis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Shaifali, Sheetal, Das P. Supported Palladium Catalyzed Carbonylative Coupling Reactions using Carbon Monoxide as C1 Source. CHEM REC 2021; 22:e202100157. [PMID: 34418288 DOI: 10.1002/tcr.202100157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Indexed: 12/16/2022]
Abstract
The carbonylative reactions of aryl halides, boronic acids, amines, activated alkene and alkynes under CO and supported palladium catalyzed conditions are very popular reactions for the synthesis of bioactive molecules, pharmaceuticals, polymers, peptides, intermediates and fine chemicals synthesis. Due to cost effectiveness and easy handling of recyclable supported palladium catalyst, it became more popular among researchers either working in academic institute or industry. In recent years, irrespective of poisoning effect of CO with palladium as major limitation, several advancements have been done through surface selection, designing and condition improvement to achieve high yield in the area of carbonylative coupling reactions. We hope this review will be helpful as a ready reference of last 20 years in the field of CO insertion reactions using diverse range of supported palladium catalysts under carbon monoxide or its sources as C1 source.
Collapse
Affiliation(s)
- Shaifali
- Chemical Technology Division, CSIR - Institute of Himalayan Bioresource Technology, 176061, Palampur, H. P., India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sheetal
- Chemical Technology Division, CSIR - Institute of Himalayan Bioresource Technology, 176061, Palampur, H. P., India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Pralay Das
- Chemical Technology Division, CSIR - Institute of Himalayan Bioresource Technology, 176061, Palampur, H. P., India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
14
|
Wang L, Tao Y, Zhang N, Li S. Convenient synthesis of 4,5-unsubstituted 3-aroylisoxazoles from methyl aryl ketones and (vinylsulfonyl)benzene in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
16
|
Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C. Recent advances on micellar catalysis in water. Adv Colloid Interface Sci 2021; 287:102299. [PMID: 33321331 DOI: 10.1016/j.cis.2020.102299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
Water is the universal solvent in nature to catalyze the biological transformation processes. However, owing to the immiscibility of many reagents in water, synthesis chemistry relies heavily on organic solvent. Micellar media is a green alternative to traditional petroleum feedstock derived solvents, which is recently attracting increasing research attention. The present review deals with the recent advances in micellar catalysis with an emphasis on the new "tailor-made" surfactants for various reactions. A brief overview of commercial surfactants, including anionic micelles, cationic micelles, and nonionic micelles is presented. More importantly, an attempt was made to discuss systematically the recent research progress on new surfactants by introducing structures, micellar effects and recycling process, aiming to serve as the basis for future development of surfactants.
Collapse
|
17
|
Fan A, Peng J, Zhou D, Li X, Chen C. Palladium-catalyzed decarbonylative C–N coupling to convert arylcarbamoyl chlorides to urea derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1793207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Aihong Fan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jinsong Peng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Dun Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
18
|
Liang Y, Lv G, Ouyang X, Song R, Li J. Recent Developments in the Polychloroalkylation by Use of Simple Alkyl Chlorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yun‐Yan Liang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Gui‐Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Xuan‐Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
19
|
Wang L, Wang H, Wang Y, Shen M, Li S. Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C3N4-TiO2 composite under visible light. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Mozaffari M, Nowrouzi N. Palladium-Catalyzed Synthesis of Symmetrical and Unsymmetrical Ureas Using Chromium Hexacarbonyl as a Convenient and Safe Alternative Carbonyl Source. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mozhdeh Mozaffari
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; 75169 Bushehr Iran
| | - Najmeh Nowrouzi
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; 75169 Bushehr Iran
| |
Collapse
|
21
|
Inaloo ID, Majnooni S. A Fe3
O4
@SiO2
/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Iman Dindarloo Inaloo
- Chemistry Department; College of Sciences; Shiraz University; 84795 71946 Shiraz Iran
| | - Sahar Majnooni
- Chemistry Department; College of Sciences; University of Isfahan; 81746-73441 Isfahan Iran
| |
Collapse
|
22
|
Song H, Han Z, Zhang C. Concise and Additive‐Free Click Reactions between Amines and CF3SO3CF3. Chemistry 2019; 25:10907-10912. [DOI: 10.1002/chem.201901865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hai‐Xia Song
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| | - Zhou‐Zhou Han
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| | - Cheng‐Pan Zhang
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| |
Collapse
|
23
|
Vartak A, Goins C, de Moura VCN, Schreidah CM, Landgraf AD, Lin B, Du J, Jackson M, Ronning DR, Sucheck SJ. Biochemical and microbiological evaluation of N-aryl urea derivatives against mycobacteria and mycobacterial hydrolases. MEDCHEMCOMM 2019; 10:1197-1204. [PMID: 31741730 PMCID: PMC6677023 DOI: 10.1039/c9md00122k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Abstract
A focused library of 24 N-aryl urea derivatives was prepared and evaluated against serine esterases of Mycobacterium tuberculosis (Mtb) Rv3802c and Mtb Ag85C. The members of the library were evaluated for both selectivity and mode of inhibition. Furan-based urea derivative 6c was found to be the most potent non-covalent inhibitor of Rv3802c with a K i value of 5.2 ± 0.7 μM. On the other hand, triazole-based ureas 10a and 10b selectively inhibited Ag85C irreversibly with a k inact/K i value of 2.3 ± 0.3 and 5.5 ± 0.4 × 10-3 μM-1 min-1, respectively. The library was also evaluated for minimum inhibitory concentration (MIC) against two strains of Mtb, Mycobacterium smegmatis, and Mycobacterium abscessus. Compounds 4a and 4c were active against Mtb H37Rv mc26206 with MIC values of 3.12 and 1.5 μM, respectively. Closely related 4e showed similar activity against Mtb H37Rv mc26206 but also possessed activity against Mtb H37Ra, Mycobacterium smegmatis and Mycobacterium abscessus. Compounds 4a, 4c, and 4e all contained a common 1-(cyclohexylmethyl)-3-phenylurea motif. In summary, we identified a selective non-covalent inhibitor of Rv3802c and covalently irreversible inhibitors of Ag85C as well as the 1-(cyclohexylmethyl)-3-phenylurea motif which showed activity against a variety of mycobacteria.
Collapse
Affiliation(s)
- Abhishek Vartak
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Christopher Goins
- Center for Therapeutic Discovery , Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , OH 44195 , USA
| | - Vinicius Calado Nogueira de Moura
- Mycobacteria Research Laboratories , Department of Microbiology , Immunology and Pathology , Colorado State University , Fort Collins , USA
| | - Celine M Schreidah
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Alexander D Landgraf
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Boren Lin
- Department of Biological Sciences , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA
| | - Jianyang Du
- Department of Biological Sciences , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA
| | - Mary Jackson
- Mycobacteria Research Laboratories , Department of Microbiology , Immunology and Pathology , Colorado State University , Fort Collins , USA
| | - Donald R Ronning
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Steven J Sucheck
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| |
Collapse
|
24
|
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan KV, Das P. Chloroform as a CO surrogate: applications and recent developments. Org Biomol Chem 2019; 17:5212-5222. [PMID: 31080990 DOI: 10.1039/c9ob00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature. As a result, the need for cheap and efficient CO surrogates has gained much attention nowadays by which CO gas can be easily generated in situ or ex situ. In this review we discuss the advantages of chloroform as CO surrogate and have surveyed recent carbonylation reactions where chloroform has been used as CO source.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Applied Chemistry, IIT(ISM) Dhanbad, Dhanbad 826004, India.
| | | | | | | | | | | |
Collapse
|
25
|
Kumar Verma P, Vishwakarma RA, Sawant SD. Reaction Medium as the Installing Reservoir for Key Functionalities in the Molecules. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Praveen Kumar Verma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Ram A. Vishwakarma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Sanghapal D. Sawant
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| |
Collapse
|