1
|
Wang X, Yang C, Chen D, Chen P, Wang Y, Cao B, Qiao C, Szostak M. Synthesis of Functionalized Indoles by an Iridium-Catalyzed N-H Insertion Cascade: Nucleophilic Cyclization of Naphthylamines with α-Diazocarbonyl Compounds. J Org Chem 2024; 89:18291-18300. [PMID: 39606850 DOI: 10.1021/acs.joc.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel iridium-catalyzed [3 + 2] annulation of naphthylamines and α-diazocarbonyl compounds was developed for the rapid assembly of densely functionalized indoles. This new catalytic process represents the first example of a cascade intramolecular nucleophilic cyclization by the N-H insertion of amines. Various naphthylamines and α-diazocarbonyl compounds could be obtained in high yields with excellent functional group tolerance. The reaction affords valuable indole derivatives, enabling expedient access to novel heterocyclic analogues not easily accessible by other methods.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chi Yang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Di Chen
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China
| | - Pu Chen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji 721013, China
| | - Yishou Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Baoyue Cao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Pathare AS, Selvakumar S. Metal-Free Synthesis of 4-Bromoisoquinolines through Brominative Annulation of 2-Alkynyl Arylimidate Using In Situ-Generated Transient Bromoiodane. J Org Chem 2024. [PMID: 39680662 DOI: 10.1021/acs.joc.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we report the in situ-generated transient bromoiodane-mediated brominative annulation of 2-alkynyl arylimidate for the synthesis of 4-bromoisoquinolines at room temperature. Using a simple hypervalent iodine reagent PIDA as a mild oxidant and potassium bromide as the halogen source, a broad range of valuable 4-bromoisoquinolines can be synthesized in excellent yields. The reaction features readily available chemicals, mild metal-free conditions, and high functional group tolerance, providing an efficient alternative for the construction of halogenated isoquinolines.
Collapse
Affiliation(s)
- Akshay S Pathare
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
3
|
Doraghi F, Baghershahi P, Ghasemi M, Mahdavi M, Al-Harrasi A. Rhodium-catalyzed transformations of diazo compounds via a carbene-based strategy: recent advances. RSC Adv 2024; 14:39337-39352. [PMID: 39670167 PMCID: PMC11635351 DOI: 10.1039/d4ra07010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules via a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence. This review describes the progress made in the last five years in rhodium-catalyzed transformations of diazo compounds as easily accessible precursors in organic chemistry.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Parsa Baghershahi
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran Iran
| | - Mehran Ghasemi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| |
Collapse
|
4
|
Tanbouza N, Caron L, Biniaz M, Marcoux A, Ollevier T. Metal-Free Oxidation of Acceptor-Donor Acylhydrazones into Diazo Compounds Using Phenyl Iododiacetate. J Org Chem 2024; 89:16600-16612. [PMID: 39472445 DOI: 10.1021/acs.joc.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aryl-ester acylhydrazones readily react with phenyl iododiacetate (PIDA) in methanol to produce the corresponding α-diazoesters with good to excellent yields (30 examples). The conditions have also been proven to be efficient in the synthesis of triazolopyridines. The crude mixture containing the diazo compound and acetic acid was also irradiated with low-energy blue LED light for a subsequent one-pot insertion of the in situ-generated carbene with AcOH to afford the respective acetates in high yields.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Laurent Caron
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Mojtaba Biniaz
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Antony Marcoux
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Thierry Ollevier
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| |
Collapse
|
5
|
Balhara R, Chatterjee R, Jindal G. Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp 2)-H bonds. Chem Soc Rev 2024; 53:11004-11044. [PMID: 39392229 DOI: 10.1039/d4cs00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Constructing highly proficient C-X (X = O, N, S, etc.) and C-C bonds by leveraging TMs (transition metals) (Fe, Cu, Pd, Rh, Au, etc.) and enzymes to catalyze carbene insertion into X-H/C(sp2)-H is a highly versatile strategy. This is primarily achieved through the in situ generation of metal carbenes from the interaction of TMs with diazo compounds. Over the last few decades, significant advancements have been made, encompassing a wide array of X-H bond insertions using various TMs. These reactions typically favor a stepwise ionic pathway where the nucleophilic attack on the metal carbene leads to the generation of a metal ylide species. This intermediate marks a critical juncture in the reaction cascade, presenting multiple avenues for proton transfer to yield the X-H inserted product. The mechanism of C(sp2)-H insertion reactions closely resembles those of X-H insertion reactions and thus have been included here. A major development in carbene insertion reactions has been the use of engineered enzymes as catalysts. Since the seminal report of a non-natural "carbene transferase" by Arnold in 2013, "P411", several heme-based enzymes have been reported in the literature to catalyze various abiological carbene insertion reactions into C(sp2)-H, N-H and S-H bonds. These enzymes possess an extraordinary ability to regulate the orientation and conformations of reactive intermediates, facilitating stereoselective carbene transfers. However, the absence of a suitable stereochemical model has impeded the development of asymmetric reactions employing a lone chiral catalyst, including enzymes. There is a pressing need to investigate alternative mechanisms and models to enhance our comprehension of stereoselectivity in these processes, which will be crucial for advancing the fields of asymmetric synthesis and biocatalysis. The current review aims to provide details on the mechanistic aspects of the asymmetric X-H and C(sp2)-H insertion reactions catalyzed by Fe, Cu, Pd, Rh, Au, and enzymes, focusing on the detailed mechanism and stereochemical model. The review is divided into sections focusing on a specific X-H/C(sp2)-H bond type catalyzed by different TMs and enzymes.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Ritwika Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| |
Collapse
|
6
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
7
|
Li H, Chen T, Wang Z, Li Y, Lu Y, Jin X, Xu N, Liu J. Rhodium(III)-Catalyzed C-H Activation/[5 + 2] Cascade Annulation of Aroyl Hydrazides with Iodonium Ylides for the Synthesis of Seven-Membered Dibenzodiazepinediones. J Org Chem 2024; 89:13412-13417. [PMID: 39213646 DOI: 10.1021/acs.joc.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel Rh(III)-catalyzed C-H activation/[5 + 2] cascade annulation of aroyl hydrazides with iodonium ylides is accomplished, in which diverse seven-membered dibenzodiazepinediones were afforded in moderate to excellent yields. This annulation reaction features an ideal functional group tolerance and a wide substrate scope. Large-scale and derivatization reactions were conducted to demonstrate the potential utility of this transformation.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiwei Wang
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuxin Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
8
|
Wei F, Zhang Y. Ligand-Enabled Palladium-Catalyzed [3 + 2] Annulation of Aryl Iodides with Maleimides via C(sp 3)-H Activation. Org Lett 2024; 26:6209-6213. [PMID: 38994868 DOI: 10.1021/acs.orglett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Palladium-catalyzed intermolecular [3 + 2] annulation reactions via C-H activation represent a powerful and charming tool for assembling cyclopentanes. Herein, we have developed a strategy for the palladium-catalyzed intermolecular alkene-relayed annulation reaction of aryl iodides and maleimides via C(sp3)-H activation for the construction of polycyclic structures. In contrast to directed-group-enabled intermolecular maleimide-relayed [3 + 2] annulation reactions, this protocol stands out for its utilization of aryl iodides as substrates. Notably, monoprotected amino acids played a crucial role as ligands in this reaction, which is rarely observed in C-H activation reactions initiated with organohalides.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Pathak JK, Kant R, Rastogi N. Chemodivergent phosphonylation of diazocarboxylates: light-on vs. light-off reactions. Org Biomol Chem 2024; 22:5224-5228. [PMID: 38869003 DOI: 10.1039/d4ob00573b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
By tapping into the divergent reactivity of diazocarboxylates under thermal and photocatalytic conditions, we could develop chemodivergent phosphonylation protocols for α-diazocarboxylates with trialkyl phosphites. While the thermal reaction led to N-P bond formation affording phosphonylated hydrazones, the visible light-mediated reaction furnished phosphonylated aryl carboxylates through C-P bond formation. Both reactions are notable for their operational simplicity and mild conditions affording products in good yields without the requirement of a metal, base or photocatalyst.
Collapse
Affiliation(s)
- Jalaj Kumar Pathak
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Huang YT, Huang WW, Huang YT, Chen HR, Barve IJ, Sun CM. Substrate-Controlled Divergent Synthesis of Benzimidazole-Fused Quinolines and Spirocyclic Benzimidazole-Fused Isoindoles. J Org Chem 2024; 89:7513-7520. [PMID: 38722245 PMCID: PMC11165576 DOI: 10.1021/acs.joc.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
A Rh(III)-catalyzed annulation of 2-arylbenzimidazoles with α-diazo carbonyl compounds via C-H activation/carbene insertion/intramolecular cyclization is explored. The switchable product selectivity is achieved by the use of distinct α-diazo carbonyl compounds. Benzimidazole-fused quinolines are obtained through [4 + 2] annulation exclusively when 2-diazocyclohexane-1,3-diones are used, where they act as a C2 synthon. Alternatively, diazonaphthalen-1(2H)-ones merely function as a one-carbon unit synthon to generate a quaternary center through [4 + 1] cyclization to afford spirocyclic benzimidazole-fused isoindole naphthalen-2-ones. A thorough mechanistic study reveals the course of the reaction.
Collapse
Affiliation(s)
- Ying-Ti Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Wan-Wen Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Yi-Ting Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Hong-Ren Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Indrajeet J. Barve
- Department
of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra India
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan ROC
| |
Collapse
|
11
|
Qiu G, Li F, Kowah JAH, Xie J, Long Q, Wang L, Liu X. Novel chiral matrine derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Bioorg Chem 2024; 146:107276. [PMID: 38479132 DOI: 10.1016/j.bioorg.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Since the thalidomide incident, research on chiral drugs has escalated immensely. Differences in drug configuration can lead to significant variations in therapeutic efficacy. Matrine, a natural product esteemed for its low toxicity and high water solubility, has garnered significant attention in research endeavors. Nonetheless, its precise target has proven elusive. In this study, we designed and synthesized a novel chiral matrine derivative. Their cytotoxicity against three types of tumor cells was assessed. Comparing the newly synthesized derivatives to the parent matrine, most compounds exhibited significantly enhanced inhibitory effects on cancer cells. Among them, Q12 exhibited the highest activity, with IC50 values of 8.31 μM against rat glioma cells C6, 6.3 μM against human liver cancer cells HepG2 and 7.14 μM against human gastric cancer cells HGC-27, meanwhile showing low toxicity. Based on IC50 values, we constructed a preliminary structure-activity relationship (SAR). Compound Q12 significantly suppressed the cloning and migration of HepG2 cells. Further mechanistic studies indicated that Q12 inhibited Topo I in HepG2 cells, leading to DNA damage, induction of G0/G1 cell cycle arrest and ultimately causing apoptosis. The molecular docking experiments provided a rational binding mode of Q12 with the Topo I-DNA complex. In vivo, experiments demonstrated that Q12 exhibited a higher tumor growth inhibition rate (TGI) compared to the positive control drug Lenvatinib, while maintaining good safety. In summary, it suggests that Topo I might be a potential target for matrine and Q12 represents a promising candidate for cancer treatment.
Collapse
Affiliation(s)
- Gan Qiu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Fan Li
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jamal A H Kowah
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Junwei Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Qingfeng Long
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xu Liu
- School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Guo W, Tantillo DJ. Running Wild through Dirhodium Tetracarboxylate-Catalyzed Combined CH(C)-Functionalization/Cope Rearrangement Landscapes: Does Post-Transition-State Dynamic Mismatching Influence Product Distributions? J Am Chem Soc 2024; 146:7039-7051. [PMID: 38418944 DOI: 10.1021/jacs.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A special type of C-H functionalization can be achieved through C-H insertion combined with Cope rearrangement (CHCR) in the presence of dirhodium catalysts. This type of reaction was studied using density functional theory and ab initio molecular dynamics simulations, the results of which pointed to the dynamic origins of low yields observed in some experiments. These studies not only reveal intimate details of the complex reaction network underpinning CHCR reactions but also further cement the generality of the importance of nonstatistical dynamic effects in controlling Rh2L4-promoted reactions.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
13
|
Yuan Y, Faure C, Berthelot M, Belmont P, Brachet E. Harnessing the Potential of Electron Donor-Acceptor Complexes and N-Centered Radicals: Expanding the Frontiers of Isoquinoline Derivative Synthesis. J Org Chem 2024; 89:3538-3545. [PMID: 38380653 DOI: 10.1021/acs.joc.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Research on synthesizing nitrogen-containing heterocyclic scaffolds is important because these structures are commonly found in Nature, such as in the alkaloids' family. In our study, we propose a new method to synthesize the isoquinoline core using an electron donor-acceptor (EDA) complex strategy. Our mechanistic investigations have confirmed that our synthesis process operates through an EDA mechanism, which is not extensively discussed in the literature, particularly regarding its applications on alkynyl substrates. This EDA strategy has proven to be a simple and straightforward way to produce isoquinoline scaffolds and their derivatives without the need for metal catalysts.
Collapse
Affiliation(s)
- Yurong Yuan
- Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, Paris F-75006, France
| | - Clara Faure
- Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, Paris F-75006, France
| | - Mathieu Berthelot
- Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, Paris F-75006, France
| | - Philippe Belmont
- Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, Paris F-75006, France
| | - Etienne Brachet
- Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, Paris F-75006, France
| |
Collapse
|
14
|
Li X, Cheng H, Shao J, Zhang G, Zhang S. Rh(III)-Catalyzed [4 + 1] Annulation of Benzamides with Vinyl Cyclic Carbonates for the Synthesis of Isoindolinones. Org Lett 2024; 26:1304-1309. [PMID: 38329782 DOI: 10.1021/acs.orglett.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A Rh(III)-catalyzed C-H bond activation and subsequent [4+1] annulation of benzamides with vinyl cyclic carbonates have been developed for the synthesis of isoindolinones, in which the electron-rich alkenes could serve as one-carbon units. This reaction proceeds smoothly with high regioselectivity under oxidant- and silver-free conditions and exhibits broad substrate scope and functional group tolerance including some biological active materials. The scale-up reaction and derivatizations of the product further demonstrate the potential synthetic utility of this transformation.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hang Cheng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jianghao Shao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, China
| | - Shuilong Zhang
- Shanghai Xchemtech Co., Ltd., 116 Cheyang Road, Songjiang district, Shanghai 201611, China
| |
Collapse
|
15
|
Teimouri M, Raju S, Acheampong E, Schmittou AN, Donnadieu B, Wipf DO, Pierce BS, Stokes SL, Emerson JP. Aminoquinoline-Based Tridentate ( NNN)-Copper Catalyst for C-N Bond-Forming Reactions from Aniline and Diazo Compounds. Molecules 2024; 29:730. [PMID: 38338473 PMCID: PMC10856582 DOI: 10.3390/molecules29030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.
Collapse
Affiliation(s)
- Mohsen Teimouri
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Allison N. Schmittou
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| |
Collapse
|
16
|
Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. Rhodium(III)-Catalyzed C-H Cascade Annulation of Arylhydrazines with 2-Diazo-1,3-indandiones for the Synthesis of Tetracyclic Indeno[1,2- b]indoles. J Org Chem 2024. [PMID: 38176055 DOI: 10.1021/acs.joc.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An efficient approach for the preparation of tetracyclic indeno[1,2-b]indoles via Rh(III)-catalyzed C-H cascade annulation between arylhydrazines and diazo indan-1,3-diones has been established. In addition, a series of indeno[1,2-b]indoles were obtained in up to 96% yield with a wide range of substrates and high functional group tolerance. Finally, the diverse transformations of the desired products demonstrate the synthetic utility and utilization of this protocol.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Yu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
17
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
18
|
Li L, Mi C, Huang G, Huang M, Zhu Y, Ni SF, Wang Z, Huang Y. A Carbene Relay Strategy for Cascade Insertion Reactions. Angew Chem Int Ed Engl 2023; 62:e202312793. [PMID: 37724438 DOI: 10.1002/anie.202312793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/20/2023]
Abstract
Insertion reactions that involve stabilized electrophilic metallocarbenes are of great importance for installing α-heteroatoms to carbonyl compounds. Nevertheless, the limited availability of carbene precursors restricts the introduction of only a single heteroatom. In this report, we describe a new approach based on an I(III) /S(VI) reagent that promotes the cascade insertion of heteroatoms. This is achieved by sequentially generating two α-heteroatom-substituted metal carbenes in one reaction. We found that this mixed I(III) /S(VI) ylide reacts efficiently with a transition metal catalyst and an X-H bond (where X=O, N). This transformation leads to the sequential formation of a sulfoxonium- and an X-substituted Rh-carbenes, enabling further reactions with another Y-H bond. Remarkably, a wide range of symmetrical and unsymmetrical α,α-O,O-, α,α-O,N-, and α,α-N,N-subsituted ketones can be prepared under mild ambient conditions. In addition, we successfully demonstrated other cascades, such as CN/CN double amidation, C-H/C-S double insertion, and C-S/Y-H double insertion (where Y=S, N, O, C). Notably, the latter two cascades enabled the simultaneous installation of three functional groups to the α-carbon of carbonyl compounds in a single step. These reactions demonstrate the versatility of our approach, allowing for the synthesis of ketones and esters with multiple α-heteroatoms using a common precursor.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chenggang Mi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Guanwang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuyi Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhaofeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
19
|
Peng RJ, Chen Y, Zhang XJ, Yan M. Regioselective ortho C-H insertion of N-nitrosoanilines with naphthoquinone carbenes. Org Biomol Chem 2023; 21:7525-7529. [PMID: 37671734 DOI: 10.1039/d3ob01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A Rh(III)-catalyzed ortho C-H migratory insertion of N-nitrosoanilines with naphthoquinone carbenes has been developed. The products were obtained in good yields under mild reaction conditions. Diverse elaborations of the products were explored. This method is valuable for the synthesis of biarylamines and their derivatives.
Collapse
Affiliation(s)
- Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
21
|
Santiago J, Orłowska K, Ociepa M, Gryko D. Aryl versus Alkyl Redox-Active Diazoacetates ─ Light-Induced C-H Insertion or 1,2-Rearrangement. Org Lett 2023; 25:6267-6271. [PMID: 37607356 PMCID: PMC10476266 DOI: 10.1021/acs.orglett.3c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 08/24/2023]
Abstract
Diazo compounds with redox-active leaving groups are versatile reagents for orthogonal functionalizations, previously utilized in the Rh-catalyzed synthesis of highly substituted cyclopropanes. Photochemical activation of aryl-substituted diazoacetates generates carbenes, whereas redox-active esters can furnish C-radicals via the photoexcitation of EDA complexes. However, the photochemical behavior of these two functionalities, while present in one molecule, remains to be defined. We demonstrate that under light irradiation, reactions occur only on the diazo moiety, leaving the NHPI functionality intact. Not only aryl- but also alkyl-substituted NHPI diazoacetates are activated by blue light; either C-H insertion or the hydrogen/carbon 1,2-rearrangement occurs depending on the aryl/alkyl group.
Collapse
Affiliation(s)
- João
V. Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Michał Ociepa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| |
Collapse
|
22
|
Singh Chauhan AN, Mali G, Dua G, Samant P, Kumar A, Erande RD. [RhCp*Cl 2] 2-Catalyzed Indole Functionalization: Synthesis of Bioinspired Indole-Fused Polycycles. ACS OMEGA 2023; 8:27894-27919. [PMID: 37576617 PMCID: PMC10413382 DOI: 10.1021/acsomega.3c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Polycyclic fused indoles are ubiquitous in natural products and pharmaceuticals due to their immense structural diversity and biological inference, making them suitable for charting broader chemical space. Indole-based polycycles continue to be fascinating as well as challenging targets for synthetic fabrication because of their characteristic structural frameworks possessing biologically intriguing compounds of both natural and synthetic origin. As a result, an assortment of new chemical processes and catalytic routes has been established to provide unified access to these skeletons in a very efficient and selective manner. Transition-metal-catalyzed processes, in particular from rhodium(III), are widely used in synthetic endeavors to increase molecular complexity efficiently. In recent years, this has resulted in significant progress in reaching molecular scaffolds with enormous biological activity based on core indole skeletons. Additionally, Rh(III)-catalyzed direct C-H functionalization and benzannulation protocols of indole moieties were one of the most alluring synthetic techniques to generate indole-fused polycyclic molecules efficiently. This review sheds light on recent developments toward synthesizing fused indoles by cascade annulation methods using Rh(III)-[RhCp*Cl2]2-catalyzed pathways, which align with the comprehensive and sophisticated developments in the field of Rh(III)-catalyzed indole functionalization. Here, we looked at a few intriguing cascade-based synthetic designs catalyzed by Rh(III) that produced elaborate frameworks inspired by indole bioactivity. The review also strongly emphasizes mechanistic insights for reaching 1-2, 2-3, and 3-4-fused indole systems, focusing on Rh(III)-catalyzed routes. With an emphasis on synthetic efficiency and product diversity, synthetic methods of chosen polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro cages are reviewed. The newly created synthesis concepts or toolkits for accessing diazepine, indol-ones, carbazoles, and benzo-indoles, as well as illustrative privileged synthetic techniques, are included in the featured collection.
Collapse
Affiliation(s)
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Garima Dua
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Priya Samant
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| |
Collapse
|
23
|
Chen YJ, Zheng J, Ma JA, Zhang FG. Radical-initiated diazo-retaining nucleophilic addition reaction of trifluorodiazoethane and diazoacetate with 2H‑azirines. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
24
|
Khot NP, Nagtilak PJ, Deo NK, Kapur M. A three component 1,3-difunctionalization of vinyl diazo esters enabled by a cobalt catalyzed C-H activation/carbene migratory insertion. Chem Commun (Camb) 2023; 59:6076-6079. [PMID: 37114935 DOI: 10.1039/d3cc00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We report herein, a modular, regioselective 1,3-oxyarylation of vinyl diazo esters via a Co-catalyzed C-H activation/carbene migratory insertion cascade. The transformation involves the formation of C-C and C-O bonds in a one-pot fashion and displays a broad substrate scope with respect to both, vinyl diazo esters as well as benzamides. The coupled products were subjected to hydrogenation to access elusive allyl alcohol scaffolds. Mechanistic investigations reveal interesting insights on the mode of transformation, involving C-H activation, carbene migratory insertion of the diazo compound followed by a radical addition as the key steps of the transformation.
Collapse
Affiliation(s)
- Nandkishor Prakash Khot
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Prajyot Jayadev Nagtilak
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Nitish Kumar Deo
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Manmohan Kapur
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
25
|
Wang M, Zhou Q, Zhang X, Fan X. Condition‐Controlled Divergent Synthesis of Imidazoindolone Spiroisoquinolinones from
N
‐Alkoxycarboxamide Indoles and Diazo Homophthalimides. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Manqing Wang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Qianting Zhou
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xinying Zhang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xuesen Fan
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| |
Collapse
|
26
|
Wang Q, Li Y, Sun J, Chen S, Li H, Zhou Y, Li J, Liu H. Rh-Catalyzed C-H Activation/Annulation of Enaminones and Cyclic 1,3-Dicarbonyl Compounds: An Access to Isocoumarins. J Org Chem 2023; 88:5348-5358. [PMID: 37011379 DOI: 10.1021/acs.joc.2c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
A facile access to isocoumarins has been established via rhodium(III)-catalyzed C-H bond activation and intramolecular C-C cascade annulation of enaminones and cyclic 1,3-dicarbonyl compounds. The synthetic protocol features a wide range of substrates with high functional group tolerance, mild reaction conditions, and the selective cleavage of the enaminone C-C bond. Notably, the cyclic 1,3-dicarbonyl compounds can in situ-generate iodonium ylide as a carbene precursor to prepare polycyclic scaffolds by reacting with PhI(OAc)2. The application of this method to prepare useful synthetic precursors and bioactive skeletons is also exemplified.
Collapse
Affiliation(s)
- Qian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ying Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hui Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
27
|
Sihag P, Chakraborty T, Jeganmohan M. Rhodium-Catalyzed Allylic C-H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Org Lett 2023. [PMID: 36795960 DOI: 10.1021/acs.orglett.2c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A redox-neutral mild methodology for the allylic C-H alkylation of unactivated alkenes with diazo compounds is demonstrated. The developed protocol is able to bypass the possibility of the cyclopropanation of an alkene upon its reaction with the acceptor-acceptor diazo compounds. The protocol is highly accomplished due to its compatibility with various unactivated alkenes functionalized with different sensitive functional groups. A rhodacycle π-allyl intermediate has been synthesized and proved to be the active intermediate. Additional mechanistic investigations aided the elucidation of the plausible reaction mechanism.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Trisha Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
28
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
29
|
Mamontov A, Chang L, Dossmann H, Bertrand B, Dechoux L, Thorimbert S. Iron Catalyzed Dearomatization of Pyridines into Annelated Azepine Derivatives in a One-Step, Three-Component Reaction. Org Lett 2023; 25:256-260. [PMID: 36580358 DOI: 10.1021/acs.orglett.2c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Commercially available Fe(TTP)Cl catalyzes three-component dearomative formal cycloaddition reactions between pyridines, diazo compounds, and coumalates. Diversely substituted annelated seven-membered N-heterocycles could be generated in less than 10 min in one step at room temperature. The reaction is compatible to gram scale. The extension to benzimidazoles in place of pyridines has been successfully demonstrated. The mechanism of this reaction has been carefully examined by computational studies that corroborate the observed regioselectivities.
Collapse
Affiliation(s)
- Alexander Mamontov
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Liang Chang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Luc Dechoux
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Serge Thorimbert
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| |
Collapse
|
30
|
Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations. Org Biomol Chem 2022; 21:24-38. [PMID: 36416081 DOI: 10.1039/d2ob01644c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metal-catalyzed successive activation and functionalization of arene/heteroarene is one of the most fundamental transformations in organic synthesis and leads to privileged scaffolds in natural products, pharmaceuticals, agrochemicals, and fine chemicals. Particularly, transition-metal-catalyzed C-H functionalization of arenes with carbene precursors via metal carbene migratory insertion has been well studied. As a result, diverse carbene precursors have been evaluated, such as diazo compounds, sulfoxonium ylides, triazoles, etc. In addition, there have been significant developments with the use of iodonium ylides as carbene precursors in recent years, and these reactions proceed with high efficiencies and selectivities. This review provides a comprehensive overview of iodonium ylides in C-H functionalizations, including the scope, limitations, and their potential synthetic applications.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vaishnavi Borkar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Mohd Mujahid
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| |
Collapse
|
31
|
Sontakke GS, Pal K, Volla CMR. Substrate-Dependent Denitrogenative Rearrangements of Rhodium Azavinyl Carbenes Involving 1,2-Aryl Migration. Org Lett 2022; 24:8796-8801. [PMID: 36445048 DOI: 10.1021/acs.orglett.2c03538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we disclose substrate-dependent rearrangements of 4-substituted N-sulfonyl-1,2,3-triazoles under Rh(II)-catalysis via denitrogenation. The reaction pathways included key 1,2-aryl migration via the formation of intermediatory phenonium ion, which is elusive so far with Rh-azavinyl carbenes. Intriguingly, the transformations were completely dependent on the substituent present leading to different scaffolds like enaminones, pyrrol-3-ones, and azadienes. Hammett studies provided essential insights into the carbocationic intermediate formation. The developed methodology featured simple reaction conditions, excellent functional group compatibility, and broad substrate scope.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
32
|
Bora D, John SE, Galla MS, Sathish M, Shankaraiah N. Rh(III)-catalysed site-selective alkylation of β-carbolines/isoquinolines and tandem C H/C N functionalization to construct indolizine-indole frameworks. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Li H, Mei M, Zhou L. Rh(III)-Catalyzed Defluorinative [4 + 2] Annulation of N-Sulfonylarylamides with Ethyl 2-Diazo-3,3,3-trifluoropropanoate: Synthesis of 1,3,4-Functionalized Isoquinolines. Org Lett 2022; 24:8969-8974. [DOI: 10.1021/acs.orglett.2c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Haosheng Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mingjing Mei
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
35
|
Wu Z, Lv G, Zheng L, Tang J, Chen J, Liu J, Li H, Wu Y. Mild construction of N-fused polycyclic compounds via Rh(III)/EosinY co-catalyze C−H activation. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Guo W, Hare SR, Chen SS, Saunders CM, Tantillo DJ. C-H Insertion in Dirhodium Tetracarboxylate-Catalyzed Reactions despite Dynamical Tendencies toward Fragmentation: Implications for Reaction Efficiency and Catalyst Design. J Am Chem Soc 2022; 144:17219-17231. [PMID: 36098581 DOI: 10.1021/jacs.2c07681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed C-H insertion reactions to form β-lactones suffer from post-transition state bifurcations, with the same transition states leading to ketones and ketenes via fragmentation in addition to β-lactones. In such a circumstance, traditional transition state theory cannot predict product selectivity, so we employed ab initio molecular dynamics simulations to do so and provide a framework for rationalizing the origins of said selectivity. Weak interactions between the catalyst and substrate were studied using energy decomposition and noncovalent interaction analyses, which unmasked an important role of the 2-bromophenyl substituent that has been used in multiple β-lactone-forming C-H insertion reactions. Small and large catalysts were shown to behave differently, with the latter providing a means of overcoming dynamically preferred fragmentation by lowering the barrier for the recombination of the product fragments in the grip of the large catalyst active site cavity.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Stephanie R Hare
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shu-Sen Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Carla M Saunders
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
37
|
Peng RJ, Chen L, Zhang XJ, Yan M. Rh(III)‐Catalyzed C‒H Functionalization of <i>N</i>‐Nitrosoanilines with <i>α</i>‐Sulfonylcarbenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Functionalization of Sulfonic Acid to Sulfonic Ester Using Diazo Compound under Mild Reaction Conditions in the Absence of Additives. ChemistrySelect 2022. [DOI: 10.1002/slct.202202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Banjare SK, Mahulkar PS, Nanda T, Pati BV, Najiar LO, Ravikumar PC. Diverse reactivity of alkynes in C-H activation reactions. Chem Commun (Camb) 2022; 58:10262-10289. [PMID: 36040423 DOI: 10.1039/d2cc03294e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkynes occupy a prominent role as a coupling partner in the transition metal-catalysed directed C-H activation reactions. Due to low steric requirements and linear geometry, alkynes can effectively coordinate with metal d-orbitals. This makes alkynes one of the most successful coupling partners in terms of the number of useful transformations. Remarkably, by changing the reaction conditions and transition-metals from 5d to 3d, the pattern of reactivity of alkynes also changes. Due to the varied reactivity of alkynes, such as alkenylation, annulation, alkylation, and alkynylation, they have been extensively used for the synthesis of valuable organic molecules. Despite enormous explorations with alkynes, there are still a lot more possible ways by which they can be made to react with M-C bonds generated through C-H activation. Practically there is no limit for the creative use of this approach. In particular with the development of new high and low valent first-row metal catalysts, there is plenty of scope for this chemistry to evolve as one of the most explored areas of research in the coming years. Therefore, a highlight article about alkynes is both timely and useful for synthetic chemists working in this area. Herein, we have highlighted the diverse reactivity of alkynes with various transition metals (Ir, Rh, Ru, Pd, Mn, Fe, Co, Ni, Cu) and their applications, along with some of our thoughts on future prospects.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pranav Shridhar Mahulkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
40
|
Karmakar U, Hwang HS, Lee Y, Cho EJ. Photocatalytic para-Selective C-H Functionalization of Anilines with Diazomalonates. Org Lett 2022; 24:6137-6141. [PMID: 35973228 DOI: 10.1021/acs.orglett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-induced para-selective C-H functionalization of anilines over N-H insertion was developed using diazomalonates with the help of an Ir(III) photocatalyst. The para-selective radical-radical cross coupling proceeded via C-centered radical intermediates generated from both anilines and diazomalonates. The photochemistry of anilines could be extended to other N-heterocycles, such as indole and carbazole. The reaction pathway for the selective C-C coupling was validated by electrochemical and photophysical experiments as well as computational studies.
Collapse
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yunjeong Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
41
|
Recent Strategies in Transition-Metal-Catalyzed Sequential C–H Activation/Annulation for One-Step Construction of Functionalized Indazole Derivatives. Molecules 2022; 27:molecules27154942. [PMID: 35956893 PMCID: PMC9370621 DOI: 10.3390/molecules27154942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Designing new synthetic strategies for indazoles is a prominent topic in contemporary research. The transition-metal-catalyzed C–H activation/annulation sequence has arisen as a favorable tool to construct functionalized indazole derivatives with improved tolerance in medicinal applications, functional flexibility, and structural complexity. In the current review article, we aim to outline and summarize the most common synthetic protocols to use in the synthesis of target indazoles via a transition-metal-catalyzed C–H activation/annulation sequence for the one-step synthesis of functionalized indazole derivatives. We categorized the text according to the metal salts used in the reactions. Some metal salts were used as catalysts, and others may have been used as oxidants and/or for the activation of precatalysts. The roles of some metal salts in the corresponding reaction mechanisms have not been identified. It can be expected that the current synopsis will provide accessible practical guidance to colleagues interested in the subject.
Collapse
|
42
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
43
|
Naskar G, Jeganmohan M. Ligand‐Enabled [3+2] Annulation of Aromatic Acids with Maleimides by C(sp
3
)−H and C(sp
2
)−H Bond Activation. Chemistry 2022; 28:e202200778. [DOI: 10.1002/chem.202200778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
44
|
Sarkar S, Samanta R. Weakly Coordinating tert-Amide-Assisted Ru(II)-Catalyzed Synthesis of Azacoumestans via Migratory Insertion of Quinoid Carbene: Application in the Total Synthesis of Isolamellarins. Org Lett 2022; 24:4536-4541. [PMID: 35735263 DOI: 10.1021/acs.orglett.2c01556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinating tert-amide-directed straightforward method was developed for the synthesis of azacoumestans using the corresponding azaheterocycle derivatives and diazonaphthoquinones under cheap Ru(II)-catalyzed conditions. The reaction proceeds via migratory insertion of quinoid carbene and subsequent Brønstead acid-mediated cyclization. The optimized C2-selective method offered a wide scope of important azaheterocycles. Bioactive natural products like isolamellarins A and B were synthesized via the developed protocol. Preliminary mechanistic studies highlighted the probable mechanistic pathway.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
45
|
Devi L, Kumar P, Kant R, Rastogi N. Exploiting the umpolung reactivity of diazo groups: direct access to triazolyl-azaarenes from azaarenes. Chem Commun (Camb) 2022; 58:7062-7065. [PMID: 35648386 DOI: 10.1039/d2cc01897g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present work documents electrophilic substitution of azaarenes, mainly isoquinolines, with hypervalent iodine diazo reagents (HIDR) followed by formal [3+2]-dipolar cycloaddition in a tandem fashion. Other azaarenes viz. pyridines and phenanthridines too could be successfully used in the reaction. The methodology capitalizes on the umpolung nature of α-aryliodonio diazo compounds for installing a nucleophile, i.e. azaarene, at their α-position. Subsequent ylide formation and intramolecular 1,5-cyclization furnished 4,3-fused 1,2,4-triazolyl-azaarenes in good yields. The reaction is notable for its mild conditions, operational simplicity and fairly general scope.
Collapse
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prashant Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Li H, Gu H, Lu Y, Xu N, Han N, Li J, Liu J, Liu J. Synthesis of Tetrahydrocarbazol-4-ones via Rh(III)-Catalyzed C-H Activation/Annulation of Arylhydrazines with Iodonium Ylides. J Org Chem 2022; 87:8142-8150. [PMID: 35675060 DOI: 10.1021/acs.joc.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rhodium(III)-catalyzed C-H activation followed by intramolecular annulation reactions between arylhydrazines and iodonium ylides under suitable conditions has been described. Tetrahydrocarbazol-4-ones are readily achieved with moderate to excellent yields. The synthetic protocol features a wide range of substrates with high functional group tolerance. The gram-scale reaction and derivatization of the product demonstrate the synthetic practicality and utilization of this method.
Collapse
Affiliation(s)
- He Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Haichun Gu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Narenchaoketu Han
- College of Traditional Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
47
|
Yang W, Zhang H, Liu Y, Tang C, Xu X, Liu J. Rh(iii)-catalyzed synthesis of dibenzo[ b, d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones via C-H activation and C-C bond cleavage. RSC Adv 2022; 12:14435-14438. [PMID: 35702227 PMCID: PMC9096810 DOI: 10.1039/d2ra02074b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
A redox-neutral synthesis of dibenzo[b,d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones has been realized via Rh(iii)-catalyzed cascade C-H activation annulation. A possible Rh(iii)-Rh(v)-Rh(iii) mechanism involving an unprecedented β-C elimination step was proposed.
Collapse
Affiliation(s)
- Wei Yang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Haonan Zhang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Yu Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Cuiman Tang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Xiaohui Xu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Jiaqi Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| |
Collapse
|
48
|
Liu J, Pajkert R, Wang L, Mei H, Röschenthaler GV, Han J. Facile synthesis of (β-chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Chen L, Su XC, Peng RJ, Zhang XJ, Yan M. Rh(III)-Catalyzed ortho C-H functionalization of aromatic amides with bis(phenylsulfonyl)diazomethane and α-diazosulfones. Org Biomol Chem 2022; 20:3268-3272. [PMID: 35363234 DOI: 10.1039/d1ob02380b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Rh(III)-catalyzed migratory insertion of bis(phenylsulfonyl) carbene and α-sulfonyl carbenes into ortho C-H bonds of aryl amides has been developed. The products were obtained with moderate to excellent yields under mild reaction conditions. A reaction mechanism was proposed based on the control experiments and previous studies. Diverse desulfonylation transformations of the products were achieved.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
50
|
Borah G, Dam B, Patel BK. Ortho
‐Functionalization of Benzimidates and Benzamidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gongutri Borah
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Binoyargha Dam
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| |
Collapse
|