1
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
2
|
Agrawal SK, Majhi PK, Goodfellow AS, Tak RK, Cordes DB, McKay AP, Kasten K, Bühl M, Smith AD. Synthesis of Tetra-Substituted 3-Hydroxyphthalide Esters by Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202402909. [PMID: 38713305 DOI: 10.1002/anie.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
A general and highly enantioselective method for the preparation of tetra-substituted 3-hydroxyphthalide esters via isothiourea-catalysed acylative dynamic kinetic resolution (DKR) is reported. Using (2S,3R)-HyperBTM (5 mol %) as the catalyst, the scope and limitations of this methodology have been extensively probed, with high enantioselectivity and good to excellent yields observed (>40 examples, up to 99 %, 99 : 1 er). Substitution of the aromatic core within the 3-hydroxyphthalide skeleton, as well as aliphatic and aromatic substitution at C(3), is readily tolerated. A diverse range of anhydrides, including those from bioactive and pharmaceutically relevant acids, can also be used. The high enantioselectivity observed in this DKR process has been probed computationally, with a key substrate heteroatom donor O⋅⋅⋅acyl-isothiouronium interaction identified through DFT analysis as necessary for enantiodiscrimination.
Collapse
Affiliation(s)
- Shubham K Agrawal
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Pankaj K Majhi
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Raj K Tak
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
3
|
Ji K, Johnson RP, McNeely J, Al Faruk M, Porco JA. Asymmetric Synthesis of Nidulalin A and Nidulaxanthone A: Selective Carbonyl Desaturation Using an Oxoammonium Salt. J Am Chem Soc 2024; 146:4892-4902. [PMID: 38319883 PMCID: PMC10922861 DOI: 10.1021/jacs.3c13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nidulaxanthone A is a dimeric, dihydroxanthone natural product that was isolated in 2020 from Aspergillus sp. Structurally, the compound features an unprecedented heptacyclic 6/6/6/6/6/6/6 ring system which is unusual for natural xanthone dimers. Biosynthetically, nidulaxanthone A originates from the monomer nidulalin A via stereoselective Diels-Alder dimerization. To expedite the synthesis of nidulalin A and study the proposed dimerization, we developed methodology involving the use of allyl triflate for chromone ester activation, followed by vinylogous addition, to rapidly forge the nidulalin A scaffold in a four-step sequence which also features ketone desaturation using Bobbitt's oxoammonium salt. An asymmetric synthesis of nidulalin A was achieved using acylative kinetic resolution (AKR) of chiral, racemic 2H-nidulalin A. Dimerization of enantioenriched nidulalin A to nidulaxanthone A was achieved using solvent-free, thermolytic conditions. Computational studies have been conducted to probe both the oxoammonium-mediated desaturation and (4 + 2) dimerization events.
Collapse
Affiliation(s)
- Kaijie Ji
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Richard P. Johnson
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - James McNeely
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Md Al Faruk
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - John A. Porco
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010439. [PMID: 36615631 PMCID: PMC9823451 DOI: 10.3390/molecules28010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Chiral 2-substituted chromanes are important substructures in organic synthesis and appear in numerous natural products. Herein, the correlation between specific optical rotations (SORs) and the stereochemistry at C2 of chiral 2-substituted chromanes was investigated through data mining, quantum-chemical calculations using density functional theory (DFT), and mechanistic analyses. For 2-aliphatic (including acyloxy and alkenyl) chromanes, the P-helicity of the dihydropyran ring usually corresponds to a positive SOR; however, 2-aryl chromanes with P-helicity tend to exhibit negative SORs. 2-Carboxyl (including alkoxycarbonyl and carbonyl) chromanes often display small experimental SORs, and theoretical calculations for them are prone to error because of the fluctuating conformational distribution with computational parameters. Several typical compounds were discussed, including detailed descriptions of the asymmetric synthesis, absolute configuration (AC) assignment methods, and systematic conformational analysis. We hope this work will enrich the knowledge of the stereochemistry of chiral 2-substituted chromanes.
Collapse
|
5
|
Lu Q, Harmalkar DS, Quan G, Kwon H, Cho J, Choi Y, Lee D, Lee K. Total Synthesis of the Neuroprotective Agent Cudraisoflavone J. JOURNAL OF NATURAL PRODUCTS 2021; 84:1359-1365. [PMID: 33826847 DOI: 10.1021/acs.jnatprod.1c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cudraisoflavone J (1), isolated from Cudrania tricuspidata, is a potent neuroprotective compound with a chiral center. Herein, we report the first total synthesis of racemic cudraisoflavone J (1) using a Claisen rearrangement and a Suzuki coupling reaction as the key steps. Racemic secondary alcohol was kinetically resolved to give (+)- and (-)-cudraisoflavone J with up to 97 and 88% enantiomeric excess, respectively. The modified Mosher's method was used to elucidate the absolute configuration of naturally occurring cudraisoflavone J.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
6
|
Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Fallek A, Weiss-Shtofman M, Kramer M, Dobrovetsky R, Portnoy M. Phosphorylation Organocatalysts Highly Active by Design. Org Lett 2020; 22:3722-3727. [PMID: 32319783 DOI: 10.1021/acs.orglett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of nucleophilic organocatalysts for alcohol/phenol phosphorylation was enhanced through attaching oligoether appendages to a benzyl substituent on imidazole- or aminopyridine-based active units, presumably because of stabilizing n-cation interactions of the ethereal oxygens with the positively charged aza-heterocycle in the catalytic intermediates, and was substantially higher than that of known benchmark catalysts for a range of substrates. Density functional theory calculations and the study of analogues having a lower potential for such stabilizing interactions support our hypothesis.
Collapse
Affiliation(s)
- Amit Fallek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Weiss-Shtofman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Kramer
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Acosta-Guzmán P, Rodríguez-López A, Gamba-Sánchez D. Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org Lett 2019; 21:6903-6908. [PMID: 31441312 DOI: 10.1021/acs.orglett.9b02520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The competition between an unprecedented reductive chlorination and the Pummerer reaction was studied and applied to the synthesis of benzofused oxygen heterocycles including 3-aminochromanes and in the intramolecular chlorination of activated aromatic rings. The use of (COCl)2 as a Pummerer activator showed substantial activity, producing α-chlorinated sulfides that can undergo Pummerer-Friedel-Crafts cyclization. If the aromatic ring has electron-donating groups in position three, then the reaction follows a different pathway, yielding the reductive chlorination products, where the chlorine atom comes from a sulfonium salt.
Collapse
Affiliation(s)
- Paola Acosta-Guzmán
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Alvaro Rodríguez-López
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| |
Collapse
|
9
|
Divergent Synthesis of Dihydropyranone Stereoisomers via N‐Heterocyclic Carbene Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|