1
|
Yuan H, Zhou Y, Xie X, Bao M, Chen K, Hong K, Yu Z, Xu X. Enantioselective Assembly of Fully Substituted α-Amino Allenoates Through a Mannich Addition and Stepwise [3,3]-σ Rearrangement Sequence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409334. [PMID: 39568322 PMCID: PMC11727130 DOI: 10.1002/advs.202409334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/27/2024] [Indexed: 11/22/2024]
Abstract
Chiral fully-substituted allenes are synthetically significant and pivotal building blocks that can engage in diverse transformations toward a variety of bioactive molecules. The enantioselective assembly of these skeletons using readily available reactants offers significant advantages but remains challenging. Herein, an asymmetric formal Michael-type addition of alkynyl imines with the key alkylgold intermediates derived in situ from N-propargylamides is accomplished under gold-complex and chiral quinine-derived squaramide (QN-SQA) synergetic catalysis. Control experiments and the density functional theory (DFT) calculations indicated that this cascade reaction involves a Mannich-type addition and stepwise [3,3]-σ rearrangement sequence, leading to the fully substituted α-amino allenoates, which are elusive and take multi-step to prepare with other methods, in high yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Haoxuan Yuan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of ChemistryPeking UniversityBeijing100871China
| | - Xiongda Xie
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ming Bao
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Kewei Chen
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Kemiao Hong
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Zhixiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of ChemistryPeking UniversityBeijing100871China
| | - Xinfang Xu
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| |
Collapse
|
2
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
3
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
4
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
5
|
Teng Y, Yu X, Shang D, Wang Z, Rao W. Brønsted Acid-Catalyzed Dehydrative Nazarov-type Cyclization of CF 3-Substituted 3-Indolylallyl Alcohols: Divergent Synthesis of 1-Trifluoromethylated Cyclopenta[ b]indoles. J Org Chem 2024. [PMID: 38175524 DOI: 10.1021/acs.joc.3c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An expedient and efficient synthetic method for the divergent synthesis of 1-trifluoromethylated cyclopenta[b]indoles that relies on Brønsted acid-catalyzed dehydrative Nazarov-type cyclization of CF3-substituted 3-indolylallyl alcohols is described. Two classes of 1-trifluoromethylated cyclopenta[b]indoles can be easily accessed simply by changing the NH-protecting group of indoles. With arylsulfonyl protected 3-indolylallyl alcohols as starting materials, the reaction provided the arylsulfonyl protected 1-trifluoromethylated cyclopenta[b]indoles in good to excellent yields, whereas pivaloyl (Piv) protected substrates led to the formation of NH-free 1-trifluoromethylated cyclolopenta[b]indoles with another alkenyl isomer. This protocol features tunable chemoselectivity, operational simplicity, excellent functional group compatibility, and mild metal-free conditions.
Collapse
Affiliation(s)
- Yuling Teng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeliang Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Feng L, Teng Y, Yu X, Wang Z, Rao W. Brønsted Acid-Catalyzed Dehydrative Nazarov-Type Cyclization/C2-N1 Cleavage Cascade of Perfluoroalkylated 3-Indolyl(2-benzothienyl)methanols. Org Lett 2023. [PMID: 37384549 DOI: 10.1021/acs.orglett.3c01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A novel and unprecedented p-toluenesulfonic acid-catalyzed dehydrative Nazarov-type cyclization/C2-N1 bond cleavage cascade reaction of perfluoroalkylated 3-indolyl(2-benzothienyl)methanols has been developed. This reaction provides an efficient and practical protocol for the construction of highly functionalized benzothiophene-fused cyclopentenones with exclusive stereoselectivity. In addition, this cascade transformation also delineates a rare example of the involvement of the selective C2-N1 bond cleavage of indoles.
Collapse
Affiliation(s)
- Li Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuling Teng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeliang Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Bao M, Zhou S, Hu W, Xu X. Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Chan P, Baratay C, Li W, Mathiew M, Yu L, Kyne S, Rao W. Gold‐ and Brønsted Acid‐Catalysed Deacyloxylative Cycloaromatisation of 1,6‐Diyne Esters to 11H‐Benzo[a]fluorenes and 13H‐Indeno[1,2‐l]phenanthrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Wenhai Li
- China Pharmaceutical University CHINA
| | | | - Lei Yu
- Monash University AUSTRALIA
| | | | | |
Collapse
|
9
|
Caballero-García G, Goodman JM. N-Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Org Biomol Chem 2021; 19:9565-9618. [PMID: 34723293 DOI: 10.1039/d1ob01708j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Triflylphosphoramides (NTPA), have become increasingly popular catalysts in the development of enantioselective transformations as they are stronger Brønsted acids than the corresponding phosphoric acids (PA). Their highly acidic, asymmetric active site can activate difficult, unreactive substrates. In this review, we present an account of asymmetric transformations using this type of catalyst that have been reported in the past ten years and we classify these reactions using the enantio-determining step as the key criterion. This compendium of NTPA-catalysed reactions is organised into the following categories: (1) cycloadditions, (2) electrocyclisations, polyene and related cyclisations, (3) addition reactions to imines, (4) electrophilic aromatic substitutions, (5) addition reactions to carbocations, (6) aldol and related reactions, (7) addition reactions to double bonds, and (8) rearrangements and desymmetrisations. We highlight the use of NTPA in total synthesis and suggest mnemonics which account for their enantioselectivity.
Collapse
Affiliation(s)
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
10
|
Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem Rev 2021; 121:8979-9038. [DOI: 10.1021/acs.chemrev.0c00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
12
|
He JP, Zhan ZZ, Luo N, Zhang MM, Huang GS. Direct synthesis of 2,3,5-trisubstituted pyrroles via copper-mediated one-pot multicomponent reaction. Org Biomol Chem 2020; 18:9831-9835. [PMID: 33245315 DOI: 10.1039/d0ob01952f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a copper-mediated one-pot synthesis of 2,3,5-trisubstituted pyrroles from 1,3-dicarbonyl compounds and acrylates using ammonium acetate as a nitrogen source. The reaction achieves C-C and C-N bond formation and provides an efficient approach to access highly functionalized pyrroles without further raw material preparation. This method is operationally simple, compatible with a wide range of functional groups, and provides the target products in moderate to good yields.
Collapse
Affiliation(s)
- Jian-Ping He
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | |
Collapse
|
13
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2020; 60:1992-1999. [DOI: 10.1002/anie.202012678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
14
|
Tashrifi Z, Mohammadi Khanaposhtani M, Biglar M, Larijani B, Mahdavi M. Recent Advances in Alkyne Hydroamination as a Powerful Tool for the Construction of C−N Bonds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research CenterTehran University of Medical Sciences Tehran I.R. Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research CenterTehran University of Medical Sciences Tehran I.R. Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterTehran University of Medical Sciences Tehran I.R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research CenterTehran University of Medical Sciences Tehran I.R. Iran
| |
Collapse
|
15
|
Chen X, Baratay CA, Mark ME, Xu X, Hong Chan PW. Gold and Brønsted Acid Catalyzed Spirocyclization of 2- and 3-Indolyl-Tethered 1,4-Enyne Acetates to Spiro[4,n]alkyl[b]indoles. Org Lett 2020; 22:2849-2853. [DOI: 10.1021/acs.orglett.0c00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoyu Chen
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Xinfang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Chen X, Holm AT, Chan PWH. Gold Catalysed 1,4-Enyne Acetate Strategy for the Synthesis of 1H-Indenes and Partially Hydrogenated Methanonaphtho[1,2-c]furan-1,3(4H)-diones. Aust J Chem 2020. [DOI: 10.1071/ch20175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A synthetic method to prepare 1H-indenes and partially hydrogenated methanonaphtho[1,2-c]furan-1,3(4H)-diones from gold(i)-catalysed 1,4-enyne acetate cycloisomerisation and oxidation or Diels–Alder reaction with maleic anhydride is described. The proposed mechanism involves Rautenstrauch rearrangement of the 1,4-enyne motif to give an insitu formed 1,3-cyclopentadiene intermediate. This is followed by 6-endo-dig cyclisation of the cyclic adduct and oxidation to give the aromatic carbocycle or Diels–Alder reaction with maleic anhydride to afford the bridged furan product.
Collapse
|
17
|
Žabka M, Kocian A, Bilka S, Andrejčák S, Šebesta R. Transformation of Racemic Azlactones into Enantioenriched Dihydropyrroles and Lactones Enabled by Hydrogen-Bond Organocatalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matej Žabka
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Adrián Kocian
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Stanislav Bilka
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| |
Collapse
|
18
|
Rabasa-Alcañiz F, Sánchez-Roselló M, Fustero S, Del Pozo C. Tandem Organocatalytic Cycloaromatization/Intramolecular Friedel-Crafts Alkylation Sequence for the Synthesis of Indolizinones and Pyrrolo-azepinone Derivatives. J Org Chem 2019; 84:10785-10795. [PMID: 31329441 DOI: 10.1021/acs.joc.9b01314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organocatalytic synthesis of indolizinones and pyrrolo-azepinones has been accomplished in a tandem fashion through a sequence that comprises initial cycloaromatization followed by intramolecular Friedel-Crafts alkylation. The process takes place under Brønsted acid catalysis, giving rise to final products in moderate to good yields. Attempts to carry out the tandem protocol in an enantioselective fashion were performed with chiral (R)-BINOL-derived N-triflyl phosphoramides. After initial optimization, the tandem process took place with moderate levels of enantioselectivity.
Collapse
Affiliation(s)
| | - María Sánchez-Roselló
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain
| | - Santos Fustero
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain.,Laboratorio de Moléculas Orgánicas , Centro de Investigación Príncipe Felipe , 46012 Valencia , Spain
| | - Carlos Del Pozo
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain
| |
Collapse
|
19
|
Holm AT, Nayak S, Chan PWH. Gold-Catalysed Oxidative Cycloisomerisation of 1,6-Diyne Acetates to 1-Naphthyl Ketones. Aust J Chem 2019. [DOI: 10.1071/ch19330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A synthetic method to prepare 1-naphthyl ketones from gold(i)-catalysed oxidative cycloisomerisation of 1,6-diyne acetates is described. The proposed mechanism involves cyclopropenation–cycloreversion of the 1,6-diyne motif initiated by a 1,2-acyloxy migration. This is followed by nucleophilic attack of the ensuing gold carbenoid species by a molecule of water and autoxidation to give the aromatic product.
Collapse
|