1
|
Chen H, Cui R, Zhang Y, Gao Y, Chen H. Synthesis of 3,3′-bisindoles via demethylenation. Org Chem Front 2022. [DOI: 10.1039/d2qo01010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a mild demethylenation for the synthesis of 3,3′-bisindoles.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yahui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Chen H, Qiao P, Luo Y, Hu J, Gao Y. Cu‐Catalyzed Aerobic Oxidative Coupling of Tetrahydro‐β‐carbolines with Indoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yining Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jing Hu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
3
|
Sathish M, Sakla AP, Nachtigall FM, Santos LS, Shankaraiah N. TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline. RSC Adv 2021; 11:16537-16546. [PMID: 35479130 PMCID: PMC9031260 DOI: 10.1039/d1ra02381k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Multi-reactive centered reagents are beneficial in chemical synthesis due to their advantage of minimal material utilization and formation of less by-products. Trichloroisocyanuric acid (TCCA), a reagent with three reactive centers, was employed in the synthesis of spirooxindoles through the oxidative rearrangement of various N-protected tetrahydro-β-carbolines. In this protocol, low equivalents of TCCA were required to access spirooxindoles (up to 99% yield) with a wide substrate scope. Furthermore, the applicability and robustness of this protocol were proven for the gram-scale total synthesis of natural alkaloids such as (±)-coerulescine (1) and (±)-horsfiline (2) in excellent yields. Three-reactive centered reagent (TCCA) mediated construction of spirooxindoles through an oxidative rearrangement of various N-protected tetrahydro-β-carbolines and total synthesis of natural alkaloids (±)-coerulescine and (±)-horsfiline.![]()
Collapse
Affiliation(s)
- Manda Sathish
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Campus Lircay Talca 3460000 Chile.,Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Fabiane M Nachtigall
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile Sede Talca 3467987 Chile
| | - Leonardo S Santos
- Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| |
Collapse
|
4
|
Misal Castro LC, Sultan I, Nishi K, Tsurugi H, Mashima K. Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. J Org Chem 2021; 86:3287-3299. [DOI: 10.1021/acs.joc.0c02661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Ghiyasabadi Z, Bahadorikhalili S, Saeedi M, Karimi‐Niyazagheh M, Mirfazli SS. SBA‐15‐Pr‐SO
3
H catalyzed one‐pot synthesis of indole derivatives via Fischer indole pathway. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zahra Ghiyasabadi
- Department of Chemistry, North Tehran BranchIslamic Azad University Tehran Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of PharmacyTehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research CenterTehran University of Medical Sciences Tehran Iran
| | - Mona Karimi‐Niyazagheh
- Department of Medicinal Chemistry, School of Pharmacy, International CampusIran University of Medical Sciences Tehran Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, International CampusIran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Cui R, Ye J, Li J, Mo W, Gao Y, Chen H. Construction of Bisindolines via Oxidative Coupling Cyclization. Org Lett 2019; 22:116-119. [PMID: 31829021 DOI: 10.1021/acs.orglett.9b04037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report a general approach for the efficient construction of three-dimensional bisindolines via oxidative coupling cyclization in an intermolecular manner. This reaction is featured by its operational simplicity, metal-free conditions, lack of protecting group, and high selectivity. Notably, a wide range of anilines are suitable in this intermolecular cyclization, furnishing corresponding bisindolines in up to 98% yield.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jinxiang Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jing Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Wenhui Mo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
8
|
Su Y, Huang G, Ye F, Qiao P, Ye J, Gao Y, Chen H. Facile access to evodiakine enabled by aerobic copper-catalyzed oxidative rearrangement. Org Biomol Chem 2019; 17:8811-8815. [PMID: 31573009 DOI: 10.1039/c9ob01832h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidation as a fundamentally important method for the synthesis of complex structures is difficult to achieve in a selective manner. Evodiakine, a complex natural product possessing an unprecedented ring system (6/5/5/7/6), has a high oxidation state without a practical solution. Herein, we report the first synthesis of evodiakine via aerobic copper-catalyzed late-stage functionalization of evodiamine.
Collapse
Affiliation(s)
- Yiting Su
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang L, Hu J, Xu R, Pan S, Zeng X, Zhong G. Catalytic Asymmetric Dearomative [3+2] Cyclisation of 1,4‐Quinone with 2,3‐Disubstituted Indoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lvye Zhang
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shulei Pan
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
10
|
Cui R, Ye J, Mo W, Gao Y, Chen H. Stabilization of Transient 3-Chloroindolenines Enables Diverse Functionalization. Org Lett 2019; 21:8884-8887. [PMID: 31517499 DOI: 10.1021/acs.orglett.9b02920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transient intermediates as highly reactive species are difficult to manipulate due to their poor stability. Stabilization of unstable intermediates for functionalization is an attractive approach, but the practical applications are still rare. Herein, we explore a strategy that could effectively stabilize labile 3-chloroindolenines and significantly improve the lifetime from seconds to weeks. This chemistry was utilized to enable the synthesis of 55 diverse compounds which are unable to be achieved by traditional approach.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jinxiang Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Wenhui Mo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
11
|
Abstract
The development of persulfate-mediated oxidation of tetrahydro-β-carbolines is reported. This mild reaction facilitates the formation of a variety of 2-formyl N-substituted tryptamines and the related derivatives as key intermediates in moderate to excellent yields. The method is applicable to direct last-stage oxidation of two interesting pharmaceuticals, Cialis and evodiamine.
Collapse
Affiliation(s)
- Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Fu Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jing Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
12
|
Xu D, Ye F, Ye J, Gao Y, Chen H. Manipulation of Water for Diversified Functionalization of Tetrahydro-β-carbolines (THβCs) with Indoles. Org Lett 2019; 21:6160-6163. [PMID: 31339328 DOI: 10.1021/acs.orglett.9b02413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water plays a crucial role in organic synthesis. However, diversified functionalization manipulated by water is still rare and remains unexplored. Herein, we report the first water-manipulated protocol to achieve the diversified functionalization of tetrahydro-β-carbolines (THβCs) in an open flask at room temperature that exhibit a broad functional-group tolerance. More water leads to monoarylation, while less water leads to diarylation. Further one-step transformation afforded oxidized bis(indolyl)methanes, eudistomin U, and the related derivatives in satisfactory yields.
Collapse
Affiliation(s)
- Dekang Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Fu Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jinxiang Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|