1
|
Dunham NP, Winston MS, Ray R, Eberle CM, Newman JA, Gao Q, Cao Y, Barrientos RC, Ji Y, Reibarkh MY, Silverman SM. Transaminase-Catalyzed Synthesis of β-Branched Noncanonical Amino Acids Driven by a Lysine Amine Donor. J Am Chem Soc 2024; 146:16306-16313. [PMID: 38804633 DOI: 10.1021/jacs.4c05175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access β-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of β-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.
Collapse
Affiliation(s)
- Noah P Dunham
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Winston
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ritwika Ray
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Claire M Eberle
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qi Gao
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yang Cao
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rodell C Barrientos
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Y Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Steven M Silverman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Tenberg V, Sadeghi M, Schultheis A, Joshi M, Stein M, Lorenz H. Aqueous solution and solid-state behaviour of l-homophenylalanine: experiment, modelling, and DFT calculations. RSC Adv 2024; 14:10580-10589. [PMID: 38567323 PMCID: PMC10985536 DOI: 10.1039/d4ra01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
In the present study, the solid-state and aqueous solubility behaviour of l-homophenylalanine (l-Hpa) is explored. Different characterization techniques such as TG, DSC, temperature-resolved PXRD, and hot-stage microscopy were used to investigate basic thermal solid-state characteristics. Solubilities of l-Hpa in water were determined as a function of temperature and pH. Moreover, a thermodynamic model based on perturbation theory (PC-SAFT) is applied to represent the data. In addition, aqueous density data of l-Hpa were measured in a broader temperature range. To model the solubility data as a function of pH, pKa values are needed, which were accessed by employing density functional theory (DFT) calculations. The solid-state investigation did not show a simple melting process of l-Hpa, but a complete decomposition of the prevalent initial solid phase at elevated temperatures approximately above 520 K. This system exhibited extraordinarily low solubilities for an amino acid at all investigated temperatures. While the solubility does not differ from its isoelectric-point value over a wide pH range, it dramatically increases as the pH falls below 2.5 and rises above 9.5. The PC-SAFT model was able to calculate the solubilities as a function of pH and predict the density values.
Collapse
Affiliation(s)
- Vico Tenberg
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Masoud Sadeghi
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Axel Schultheis
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Meenakshi Joshi
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Heike Lorenz
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| |
Collapse
|
3
|
Zhang Z, Liu Y, Zhao J, Li W, Hu R, Li X, Li A, Wang Y, Ma L. Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of L-2-aminobutyric acid. BMC Biotechnol 2021; 21:55. [PMID: 34563172 PMCID: PMC8466713 DOI: 10.1186/s12896-021-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The unnatural amino acid, L-2-aminobutyric acid (L-ABA) is an essential chiral building block for various pharmaceutical drugs, such as the antiepileptic drug levetiracetam and the antituberculosis drug ethambutol. The present study aims at obtaining variants of ω-transaminase from Ochrobactrum anthropi (OATA) with high catalytic activity to α-ketobutyric acid through protein engineering. RESULTS Based on the docking model using α-ketobutyric acid as the ligand, 6 amino acid residues, consisting of Y20, L57, W58, G229, A230 and M419, were chosen for saturation mutagenesis. The results indicated that L57C, M419I, and A230S substitutions demonstrated the highest elevation of enzymatic activity among 114 variants. Subsequently, double substitutions combining L57C and M419I caused a further increase of the catalytic efficiency to 3.2-fold. This variant was applied for threonine deaminase/OATA coupled reaction in a 50-mL reaction system with 300 mM L-threonine as the substrate. The reaction was finished in 12 h and the conversion efficiency of L-threonine into L-ABA was 94%. The purity of L-ABA is 75%, > 99% ee. The yield of L-ABA was 1.15 g. CONCLUSION This study provides a basis for further engineering of ω-transaminase for producing chiral amines from keto acids substrates.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Ruiwen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Xia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China.
| |
Collapse
|
4
|
Li F, Yang LC, Zhang J, Chen JS, Renata H. Stereoselective Synthesis of β-Branched Aromatic α-Amino Acids by Biocatalytic Dynamic Kinetic Resolution*. Angew Chem Int Ed Engl 2021; 60:17680-17685. [PMID: 34056805 DOI: 10.1002/anie.202105656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
β-Branched noncanonical amino acids are valuable molecules in modern drug development efforts. However, they are still challenging to prepare due to the need to set multiple stereocenters in a stereoselective fashion, and contemporary methods for the synthesis of such compounds often rely on the use of rare-transition-metal catalysts with designer ligands. Herein, we report a highly diastereo- and enantioselective biocatalytic transamination method to prepare a broad range of aromatic β-branched α-amino acids. Mechanistic studies show that the transformation proceeds through dynamic kinetic resolution that is unique to the optimal enzyme. To highlight its utility and practicality, the biocatalytic reaction was applied to the synthesis of several sp3 -rich cyclic fragments and the first total synthesis of jomthonic acid A.
Collapse
Affiliation(s)
- Fuzhuo Li
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Li-Cheng Yang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Jingyang Zhang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
5
|
Li F, Yang L, Zhang J, Chen JS, Renata H. Stereoselective Synthesis of β‐Branched Aromatic α‐Amino Acids by Biocatalytic Dynamic Kinetic Resolution**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fuzhuo Li
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Li‐Cheng Yang
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Jingyang Zhang
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Jason S. Chen
- Automated Synthesis Facility The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Hans Renata
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
6
|
Wang L, Diao S, Sun Y, Jiang S, Liu Y, Wang H, Wei D. Rational engineering of Acinetobacter tandoii glutamate dehydrogenase for asymmetric synthesis of l-homoalanine through biocatalytic cascades. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00376c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high yield of l-homoalanine can be obtained by an engineered dual cofactor-dependent GluDH in a cascade without the addition of NAD(P)H.
Collapse
Affiliation(s)
- Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Shiqing Diao
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Yangyang Sun
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
7
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
8
|
Gourbeyre L, Heuson E, Charmantray F, Hélaine V, Debard A, Petit JL, de Berardinis V, Gefflaut T. Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versatile and sensitive continuous colorimetric assays were developed for the high throughput screening of a large collection of amine-TAs from biodiversity, and allowed the discovery of a set of diverse biocatalysts with high synthetic potential.
Collapse
Affiliation(s)
- Léa Gourbeyre
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Egon Heuson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Franck Charmantray
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Virgil Hélaine
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Adrien Debard
- Génomique métabolique
- Genoscope
- Institut François Jacob
- CEA
- CNRS
| | | | | | - Thierry Gefflaut
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| |
Collapse
|
9
|
Laurent V, Gourbeyre L, Uzel A, Hélaine V, Nauton L, Traïkia M, de Berardinis V, Salanoubat M, Gefflaut T, Lemaire M, Guérard-Hélaine C. Pyruvate Aldolases Catalyze Cross-Aldol Reactions between Ketones: Highly Selective Access to Multi-Functionalized Tertiary Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Léa Gourbeyre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Alexandre Uzel
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Véronique de Berardinis
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Thierry Gefflaut
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Kinetic Analysis of R-Selective ω-Transaminases for Determination of Intrinsic Kinetic Parameters and Computational Modeling of Kinetic Resolution of Chiral Amine. Appl Biochem Biotechnol 2020; 191:92-103. [PMID: 31997135 DOI: 10.1007/s12010-020-03240-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Reliable kinetic parameters of enzymes are of paramount importance for a precise understanding of catalytic performance, which is essential for enzyme engineering and process optimization. Here, we developed a simple and convenient method to determine intrinsic kinetic parameters of R-selective ω-transaminases (ω-TAs) with a minimal set of kinetic data. Using (R)-α-methylbenzylamine ((R)-α-MBA) and pyruvate as a substrate pair, two R-selective ω-TAs from Arthrobacter sp. and Aspergillus fumigatus were subjected to kinetic measurements. In contrast to S-selective ω-TAs, both R-selective ω-TAs were observed to be devoid of substrate inhibition by pyruvate. Double reciprocal plot analysis was carried out with two sets of kinetic data obtained at varying concentrations of (R)-α-MBA under a fixed concentration of pyruvate and vice versa, leading to the determination of three intrinsic kinetic parameters, i.e., one kcat and two KM values, using three regression constants. The validity of the kinetic parameters was verified by a self-consistency test using a regression constant left out in the kinetic parameter determination, showing that deviations of calculated regression constants from the experimental ones were less than 15%. Because the kinetic parameters for (R)-α-MBA and pyruvate are not apparent but intrinsic, a cosubstrate substitution method enabled rapid determination of intrinsic parameters for a new substrate pair using just one set of kinetic data. Eventually, computational modeling of kinetic resolution of rac-α-MBA was carried out and showed a good agreement with experimental reaction progresses.
Collapse
|