1
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
2
|
Shukla G, Singh M, Singh S, Singh MS. Iridium(III)-catalyzed photoredox cross-coupling of alkyl bromides with trialkyl amines: access to α-alkylated aldehydes. Chem Commun (Camb) 2024. [PMID: 38686503 DOI: 10.1039/d4cc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A C(sp3)-C(sp3) cross coupling approach based on an iridium-photocatalytic radical process has been developed enabling the synthesis of various α-alkylated aldehydes from easily available/synthesized alkyl bromides and trialkyl amines under mild photocatalytic conditions. The synthesized aldehydes are also explored as a functional handle for various useful products such as carboxylic acid, alcohol and N-heterocycle synthesis.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-211005, India.
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-211005, India.
| | - Saurabh Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-211005, India.
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-211005, India.
| |
Collapse
|
3
|
Sui JL, Zhong LJ, Xiong BQ, Tang KW, Liu Y. Regioselective synthesis of N-containing polycyclic compounds via radical annulation cyclization of 1,7-dienes with aldehydes. Chem Commun (Camb) 2024; 60:4834-4837. [PMID: 38619398 DOI: 10.1039/d4cc00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A convenient method for oxidant-promoted radical cascade acylation or decarbonylative alkylation of 1,7-dienes with aldehydes has been established. This method allows for the rapid construction of N-containing polycyclic skeletons in a highly regio- and stereoselective manner. This transformation provides a simple and efficient method for the preparation of a range of tetrahydro-6H-indeno[2,1-c]quinolinone derivatives by sequential formation of three new carbon-carbon bonds. Additionally, this radical cascade cyclization can selectively convert aldehydes into aroyl/primary aliphatic acyl radicals and secondary or tertiary alkyl radicals.
Collapse
Affiliation(s)
- Jia-Li Sui
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
4
|
Qi M, Xu AW. A visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction. Org Biomol Chem 2024; 22:2654-2661. [PMID: 38470359 DOI: 10.1039/d4ob00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
Collapse
Affiliation(s)
- Ming Qi
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
5
|
Chen W, Zuo J, Sang K, Qian G, Zhang J, Chen D, Zhou X, Yuan W, Duan X. Leveraging the Proximity and Distribution of Cu-Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202314288. [PMID: 37988201 DOI: 10.1002/anie.202314288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji Zuo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Wang R, Wang CY, Liu P, Bian KJ, Yang C, Wu BB, Wang XS. Enantioselective catalytic radical decarbonylative azidation and cyanation of aldehydes. SCIENCE ADVANCES 2023; 9:eadh5195. [PMID: 37656788 PMCID: PMC10854440 DOI: 10.1126/sciadv.adh5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Empowered by the ubiquity of carbonyl functional groups in organic compounds, decarbonylative functionalization was prevalent in the construction of complex molecules. Under this context, asymmetric decarbonylative functionalization has emerged as an efficient pathway to accessing chiral motifs. However, ablation of enantiomeric control in a conventional 2e transition metal-catalyzed process was notable because of harsh conditions (high temperatures, etc.) that are usually required. To address this challenge and use readily accessible aldehyde directly, we report the asymmetric radical decarbonylative azidation and cyanation. Diverse aldehydes were directly used as alkyl radical precursor, engaging in the subsequent inner-sphere or outer-sphere ligand transfer where functional motifs (CN and N3) could be incorporated in excellent site- and enantioselectivity. Mild conditions, broad scope, excellent regioselectivity (driven by polarity-matching strategy), and enantioselectivity were shown for both transformations. This radical decarbonylative strategy using aldehydes as alkyl radical precursor has offered a powerful reaction manifold in asymmetric radical transformations to construct functional motifs regio- and stereoselectively.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Cheng-Yu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Peng Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kang-Jie Bian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chi Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bing-Bing Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
7
|
Dong H, Chen C, Zhao J, Ji Y, Yang W. Photoinduced Photocatalyst-Free Cascade Cyclization of Alkynes with Sodium Sulfinates for the Synthesis of Benzothiophenes and Thioflavones. Molecules 2023; 28:molecules28114436. [PMID: 37298913 DOI: 10.3390/molecules28114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.
Collapse
Affiliation(s)
- Hongqiang Dong
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunli Chen
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Jinlei Zhao
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225127, China
| | - Yigang Ji
- Jiangsu Key Laboratory of Biofuctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenchao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Li L, Zheng H, Guo F, Fang Z, Sun Q, Li J, Gao Q, Zhang T, Fang L. Photocatalyst-free visible-light-induced highly selective acylation of purine nucleosides at the C6 position. Chem Commun (Camb) 2023; 59:3910-3913. [PMID: 36919642 DOI: 10.1039/d3cc00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A protocol for visible-light-induced C-H acylation selectively at the C6 position of purine nucleosides with aldehydes under photocatalyst-free conditions was established herein. This protocol allows the green, mild, and efficient functionalization of various purine nucleosides with a broad range of alkyl and aryl aldehydes.
Collapse
Affiliation(s)
- Luohao Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Huiqin Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Feixiang Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Zehui Fang
- Yanbian University College of Medicine, Yanbian Korean Autonomous Prefecture, Jilin Province 133002, People's Republic of China
| | - Qianqian Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Jing Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang city, Henan Province 453003, People's Republic of China.
| |
Collapse
|
9
|
Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Xu L, Huang Z, Yang M, Wu J, Chen W, Wu Y, Pan Y, Lu Y, Zou Y, Wang S. Salting‐Out Aldehyde from the Electrooxidation of Alcohols with 100 % Selectivity. Angew Chem Int Ed Engl 2022; 61:e202210123. [DOI: 10.1002/anie.202210123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Leitao Xu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Zhifeng Huang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Ming Yang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Jingcheng Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yandong Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yuping Pan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yuxuan Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
11
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
12
|
Xu L, Huang Z, Yang M, Wu J, Chen W, Wu Y, Pan Y, Lu Y, Zou Y, Wang S. Salting‐out aldehyde from electrooxidation of alcohol with 100% selectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leitao Xu
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zhifeng Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Ming Yang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Jingcheng Wu
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Wei Chen
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yandong Wu
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yuping Pan
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yuxuan Lu
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yuqin Zou
- Hunan University Yuelu Road Changsha CHINA
| | - Shuangyin Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
13
|
Li X, Shen Y, Zhang G, Zheng X, Zhao Q, Song Z. Ru(II)-Catalyzed Decarbonylative Alkylation and Annulations of Benzaldehydes with Iodonium Ylides under Chelation Assistance. Org Lett 2022; 24:5281-5286. [PMID: 35849760 DOI: 10.1021/acs.orglett.2c01843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ru(II)-catalyzed decarbonylative alkylation and annulation of salicylaldehydes and 2-aminobenzaldehydes with iodonium ylides has been developed for the synthesis of dibenzo[b,d]furans and NH-free carbazolones. The reaction proceeds smoothly under mild conditions with a low catalyst loading and a broad substrate compatibility. Notably, hydroxy and free amino groups were demonstrated to be the effective directing groups, enabling the successful aldehyde C-H bond activation and subsequent decarbonylation and annulation under the inexpensive Ru(II) catalyst.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yang Shen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, China
| | - Xin Zheng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zihe Song
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
14
|
Wang M, Liu J, Zhang Y, Sun P. Decarbonylative C3‐Alkylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes via Photocatalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jie Liu
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000 CHINA
| | | | | |
Collapse
|
15
|
Nonami R, Morimoto Y, Kanemoto K, Yamamoto Y, Shirai T. Cationic Iridium‐Catalyzed Asymmetric Decarbonylative Aryl Addition of Aromatic Aldehydes to Bicyclic Alkenes. Chemistry 2022; 28:e202104347. [DOI: 10.1002/chem.202104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Reina Nonami
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Yusei Morimoto
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1-3-27, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| |
Collapse
|
16
|
Wang X, Shao X, Cao Z, Wu X, Zhu C. Metal‐free photoinduced deformylative Minisci‐type reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the para-position of dearomatized aryl rings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and efficient strategy for the oxidative spirocyclization of biaryl ynones has been developed, where nonsubstituted groups were on the para-position of the dearomatized aryl rings.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Beibei Chen
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P. R. China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
18
|
Shen LY, Sun Y, Wang YQ, Li B, Yang WC, Dai P. K2S2O8-promoted radical trifluoromethylthiolation/spirocyclization for the synthesis of SCF3‑featured spiro[5,5]trienones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Lu XY, Ge MY, Tao TH, Sun XM, Gao MT, Bao ST, Liu QL, Xia ZJ, Xia J. Iron-catalyzed decarboxylative and oxidative decarbonylative cross-coupling: a new strategy for the synthesis of monofluoroalkenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01567b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, an iron(ii)-catalyzed decarboxylative and oxidative decarbonylative cross-coupling of α-fluoro cinnamic acids with aliphatic aldehydes is presented.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
- School of Chemistry and Chemical Engineering, AnHui University, He Fei, 230601, China
| | - Meng-Yuan Ge
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Ting-Hua Tao
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Xiao-Mei Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Meng-Ting Gao
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Shu-Ting Bao
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Qi-Le Liu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Ze-Jie Xia
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Jing Xia
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| |
Collapse
|
20
|
Zhu Y, Xiao T, Xia D, Yang W. Recent Advances in the Decarboxylative Fluoroalkylation of Fluoroalkyl Carboxylic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
22
|
Shi Y, Xiao T, Xia D, Yang W. SCF 3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Wang Y, Lang Y, Li CJ, Zeng H. Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones. Chem Sci 2022; 13:698-703. [PMID: 35173934 PMCID: PMC8768876 DOI: 10.1039/d1sc06278f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
The decarbonylative-coupling reaction is generally promoted by transition metals (via organometallic complexes) or peroxides (via radical intermediates), often at high temperatures to facilitate the CO release. Herein, a visible-light-induced, transition metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes at room temperature is reported. Tertiary/secondary alcohols were obtained in moderate to excellent yields promoted by using CsF under mild conditions. The detailed mechanistic investigation showed that the reaction proceeded through photoexcitation–decarbonylation of the aldehyde to generate an aromatic anion, followed by its addition to ketones/aldehydes. The reaction mechanism was verified by the density functional theory (DFT) calculations. A visible-light-induced, transition-metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes via anion intermediates at room temperature is developed.![]()
Collapse
Affiliation(s)
- Yi Wang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
24
|
Guo X, Wang Y, Zhao Z, Wang Q, Zuo J, Wang L. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1 H)-ones and the Performance Evaluation via Electro-descriptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Wang W, Zhang M, Yang W, Yang X. Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Dai P, Li C, Li Y, Zhu Y, Teng P, Gu Y, Zhang W. Direct Difluoromethylation of Heterocycles through Photosensitized Electron Transfer. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY United Kingdom, UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
27
|
Sun Z, Huang H, Wang Q, Deng G. Bromo Radical‐Mediated Photoredox Aldehyde Decarbonylation towards Transition‐Metal‐Free Hydroalkylation of Acrylamides at Room Temperature. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
28
|
He XK, Lu J, Ye HB, Li L, Xuan J. Direct Photoexcitation of Benzothiazolines: Acyl Radical Generation and Application to Access Heterocycles. Molecules 2021; 26:6843. [PMID: 34833936 PMCID: PMC8624417 DOI: 10.3390/molecules26226843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
An acyl radical generation and functionalization strategy through direct photoexcitation of benzothiazolines has been developed. The formed acyl radical species can either be trapped by quinoxalin-2-ones to realize their C(3)-H functionalization or trigger a cascade radical cyclization with isonitriles to synthesise biologically important phenanthridines. The synthetic value of this protocol can be further illustrated by the modification of quinoxalin-2-ones, containing important natural products and drug-based complex molecules.
Collapse
Affiliation(s)
- Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Hai-Bing Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
29
|
Xia D, Duan XF. Iron-Catalyzed Dearomatization of Biaryl Ynones with Aldehydes via Double C-H Functionalization in Eco-Benign Solvents: Highly Atom-Economical Synthesis of Acylated Spiro[5.5]trienones. J Org Chem 2021; 86:15263-15275. [PMID: 34643395 DOI: 10.1021/acs.joc.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple C-H bonds of biaryl ynones render the 6-exo-trig regioselective C-H activation dearomatization to spiro[5.5]trienones challenging since the competing reactions of C-H bonds on Ar1 or the ortho-C-H bonds on Ar3 may result in 5-exo-trig cyclization to indenones or 6-exo-trig ortho-dearomatization, respectively. We here report an unprecendented dearomatization of biaryl ynones with aldehydes via double C-H functionalization where a regiospecific remote unactivated para-C-H functionalization of biaryl ynones efficiently furnishes acylated spiro[5.5]trienones. This cascade cyclization features a green catalyst and solvent and high atom- and step-economy.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Yang WC, Chen CY, Li JF, Wang ZL. Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Zhang M, Shen L, Dong S, Li B, Meng F, Si W, Yang W. DTBP‐Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp
3
)−H Bond Functionalization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ming‐Ming Zhang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Liu‐Yu Shen
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Sa Dong
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Bing Li
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Fei Meng
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Wei‐Jie Si
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Wen‐Chao Yang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
32
|
Correa A. Metal‐Catalyzed C(sp
2
)−H Functionalization Processes of Phenylalanine‐ and Tyrosine‐Containing Peptides. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arkaitz Correa
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
33
|
Li HC, Sun K, Li X, Wang SY, Chen XL, He SQ, Qu LB, Yu B. Metal-Free Photosynthesis of Alkylated Benzimidazo[2,1- a]isoquinoline-6(5 H)-ones and Indolo[2,1- a]isoquinolin-6(5 H)-ones in PEG-200. J Org Chem 2021; 86:9055-9066. [PMID: 34157844 DOI: 10.1021/acs.joc.1c01022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced decarboxylation reaction was developed for the synthesis of alkylated benzimidazo[2,1-a]isoquinoline-6(5H)-ones and indolo[2,1-a]isoquinolin-6(5H)-ones under metal-free conditions. Impressively, metal catalysts and traditionally volatile organic solvents could be effectively avoided.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si-Yang Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Qi He
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Liu H, Yu JT, Pan C. Diacyl peroxides: practical reagents as aryl and alkyl radical sources. Chem Commun (Camb) 2021; 57:6707-6724. [PMID: 34137395 DOI: 10.1039/d1cc02322e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diacyl peroxides, which can be easily synthesized from corresponding carboxylic acids, are commonly utilized as radical initiators and one electron oxidants. Under thermal, transition-metal catalysis or irradiation conditions the cleavage of relatively weak O-O bonds would occur followed by CO2 extrusion to generate the corresponding aryl or alkyl radicals. Thus, diacyl peroxides can be employed as ideal arylating and alkylating reagents in organic synthesis, including C-H/N-H arylation/alkylation, aryl/alkyl radical addition to unsaturated bonds, hetero arylation/alkylation, eliminative arylation/alkylation, perfluoroalkylation etc. Moreover, these arylation/alkylation protocols have been successfully utilized in the synthesis and late-stage functionalization of natural products as well as bioactive molecules. In this review, recent advances on arylation and alkylation using diacyl peroxides as aryl and alkyl radical sources are summarized and discussed.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China. and School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
35
|
Zhang MM, Sun Y, Wang WW, Chen KK, Yang WC, Wang L. Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Org Biomol Chem 2021; 19:3844-3849. [PMID: 33949560 DOI: 10.1039/d1ob00079a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrochemical sulfonylation/cyclization of 2-alkynylthioanisoles with sodium sulfinates was developed under catalyst-, external oxidant- and metal-free conditions. The electrosynthesis provides sustainable and efficient access to 3-sulfonated benzothiophenes with good substrate scope and functional group tolerance. This cascade radical process has been triggered through a sulfonyl radical addition to alkynes using sodium sulfinates under electrochemical conditions.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Yu Sun
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wan-Wan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, P. R. China
| | - Kang-Kang Chen
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wen-Chao Yang
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| |
Collapse
|
36
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
37
|
Yu X, Chen Y, Luo Q, Li Y, Dai P, Xia Q, Liu F, Zhang W. Selective Radical N−H Activation: the Unprecedented Harnessing of Formamide with S
8
for N−S−N Bonds Construction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Qian Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
38
|
Zhu HL, Zeng FL, Chen XL, Sun K, Li HC, Yuan XY, Qu LB, Yu B. Acyl Radicals from α-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Org Lett 2021; 23:2976-2980. [PMID: 33780256 DOI: 10.1021/acs.orglett.1c00655] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and metal-free visible-light-induced decarboxylative arylation procedure at room temperature was described for the construction of acylated heterocyclic derivatives, such as benzimidazo/indolo[2,1-a]isoquinolin-6(5H)-ones, aroylazaspiro[4.5]trienones, thioflavones, and so on. This practical arylation procedure was conducted by using 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst under mild conditions, which avoided the use of an additional base, traditional heating, and metal reagents.
Collapse
Affiliation(s)
- Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Ya Yuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Ma CH, Chen M, Feng ZW, Zhang Y, Wang J, Jiang YQ, Yu B. Functionalization of imidazo[1,2-a]pyridines via radical reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00704a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent advances in radical reactions for the direct functionalization of imidazo[1,2-a]pyridines are reviewed.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Ming Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhi-Wen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jin Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
40
|
Ma C, Feng Z, Li J, Zhang D, Li W, Jiang Y, Yu B. Photocatalytic transition-metal-free direct 3-alkylation of 2-aryl-2 H-indazoles in dimethyl carbonate. Org Chem Front 2021. [DOI: 10.1039/d1qo00064k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general transition-metal-free photocatalytic decarboxylative 3-alkylation reaction of 2-aryl-2H-indazoles was developed under visible-light irradiation under mild conditions.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhiwen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
41
|
Sun K, Lv QY, Lin YW, Yu B, He WM. Nitriles as radical acceptors in radical cascade reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01058h] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of the cyano group as a radical acceptor in the cascade reactions for the construction of various important heterocycles and carbocycles was summarized.
Collapse
Affiliation(s)
- Kai Sun
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang
- China
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
| |
Collapse
|
42
|
|
43
|
San Segundo M, Correa A. Site-selective aqueous C-H acylation of tyrosine-containing oligopeptides with aldehydes. Chem Sci 2020; 11:11531-11538. [PMID: 34094398 PMCID: PMC8162766 DOI: 10.1039/d0sc03791e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
The development of useful synthetic tools to label amino acids within a peptide framework for the ultimate modification of proteins in a late-stage fashion is a challenging task of utmost importance within chemical biology. Herein, we report the first Pd-catalyzed C-H acylation of a collection of Tyr-containing peptides with aldehydes. This water-compatible tagging technique is distinguished by its site-specificity, scalability and full tolerance of sensitive functional groups. Remarkably, it provides straightforward access to a high number of oligopeptides with altered side-chain topology including mimetics of endomorphin-2 and neuromedin N, thus illustrating its promising perspectives toward the diversification of structurally complex peptides and chemical ligation.
Collapse
Affiliation(s)
- Marcos San Segundo
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Arkaitz Correa
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
44
|
Dai P, Li C, Li Y, Xia Q, Zhang M, Gu Y, Zhang W. Transition‐Metal‐Free Csp
2
−H Regioselective Thiocyanation of Free Anilines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Warfield RG42 6EY United Kingdom (UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| |
Collapse
|
45
|
Pawlowski R, Skorka P, Stodulski M. Radical‐Mediated Non‐Dearomative Strategies in Construction of Spiro Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- R. Pawlowski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | - P. Skorka
- Medical University of Warsaw Faculty of Pharmacy Warsaw Poland
| | - M. Stodulski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
46
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
47
|
Liu M, Zhang Z, Liu H, Wu T, Han B. Dehydroxyalkylative halogenation of C(aryl)-C bonds of aryl alcohols. Chem Commun (Camb) 2020; 56:7120-7123. [PMID: 32458843 DOI: 10.1039/d0cc02306j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We herein report Cu mediated side-directed dehydroxyalkylative halogenation of aryl alcohols. C(aryl)-C bonds of aryl alcohols were effectively cleaved, affording the corresponding aryl chlorides, bromides and iodides in excellent yields. Aryl alcohols could serve as both aromatic electrophilic and radical synthetic equivalents during the reaction.
Collapse
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
48
|
Luo W, Yang Y, Liu B, Yin B. Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. J Org Chem 2020; 85:9396-9404. [PMID: 32524818 DOI: 10.1021/acs.joc.0c01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A protocol for FeCl2-catalyzed oxidative decarbonylative α-alkylation of acyl furans using alkyl aldehydes as the alkylating agents has been developed. This protocol affords α-alkyl-α-acylfurans in moderate to good yields in a practical and sustainable fashion. Mechanistic studies suggest that the reaction proceeds via generation of an alkyl radical from the alkyl aldehyde, addition of the radical to the furan ring, and subsequent rearomatization.
Collapse
Affiliation(s)
- Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
49
|
Bao H, Zhou B, Luo SP, Xu Z, Jin H, Liu Y. P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02454] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
50
|
Lu H, Yu TY, Xu PF, Wei H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chem Rev 2020; 121:365-411. [DOI: 10.1021/acs.chemrev.0c00153] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|