1
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. Angew Chem Int Ed Engl 2021; 60:16906-16910. [PMID: 34057803 PMCID: PMC8361964 DOI: 10.1002/anie.202104278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
2
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:17043-17047. [PMID: 38505659 PMCID: PMC10946705 DOI: 10.1002/ange.202104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
3
|
Pompei S, Grimm C, Farnberger JE, Schober L, Kroutil W. Regioselectivity of Cobalamin-Dependent Methyltransferase Can Be Tuned by Reaction Conditions and Substrate. ChemCatChem 2020; 12:5977-5983. [PMID: 33442427 PMCID: PMC7783988 DOI: 10.1002/cctc.202001296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Regioselective reactions represent a significant challenge for organic chemistry. Here the regioselective methylation of a single hydroxy group of 4-substituted catechols was investigated employing the cobalamin-dependent methyltransferase from Desulfitobacterium hafniense. Catechols substituted in position four were methylated either in meta- or para-position to the substituent depending whether the substituent was polar or apolar. While the biocatalytic cobalamin dependent methylation was meta-selective with 4-substituted catechols bearing hydrophilic groups, it was para-selective for hydrophobic substituents. Furthermore, the presence of water miscible co-solvents had a clear improving influence, whereby THF turned out to enable the formation of a single regioisomer in selected cases. Finally, it was found that also the pH led to an enhancement of regioselectivity for the cases investigated.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Judith E. Farnberger
- Austrian Centre of Industrial Biotechnologyc/o Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealthUniversity of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
4
|
Grimm C, Lazzarotto M, Pompei S, Schichler J, Richter N, Farnberger JE, Fuchs M, Kroutil W. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol- O-demethylase. ACS Catal 2020; 10:10375-10380. [PMID: 32974079 PMCID: PMC7506938 DOI: 10.1021/acscatal.0c02790] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Indexed: 11/28/2022]
Abstract
![]()
The cleavage of aryl
methyl ethers is a common reaction in chemistry requiring rather harsh
conditions; consequently, it is prone to undesired reactions and lacks
regioselectivity. Nevertheless, O-demethylation of
aryl methyl ethers is a tool to valorize natural and pharmaceutical
compounds by deprotecting reactive hydroxyl moieties. Various oxidative
enzymes are known to catalyze this reaction at the expense of molecular
oxygen, which may lead in the case of phenols/catechols to undesired
side reactions (e.g., oxidation, polymerization). Here an oxygen-independent
demethylation via methyl transfer is presented employing a cobalamin-dependent
veratrol-O-demethylase (vdmB). The biocatalytic demethylation
transforms a variety of aryl methyl ethers with two functional methoxy
moieties either in 1,2-position or in 1,3-position. Biocatalytic reactions
enabled, for instance, the regioselective monodemethylation of substituted
3,4-dimethoxy phenol as well as the monodemethylation of 1,3,5-trimethoxybenzene.
The methyltransferase vdmB was also successfully applied for the regioselective
demethylation of natural compounds such as papaverine and rac-yatein. The approach presented here represents an alternative
to chemical and enzymatic demethylation concepts and allows performing
regioselective demethylation in the absence of oxygen under mild conditions,
representing a valuable extension of the synthetic repertoire to modify
pharmaceuticals and diversify natural products.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Mattia Lazzarotto
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Johanna Schichler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Nina Richter
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Judith E. Farnberger
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|