1
|
Annibaletto J, Jacob C, Thilmany P, Loison A, Escorihuela J, Evano G. Mechanistic Studies on the Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides to Indenes. ACS OMEGA 2024; 9:51690-51700. [PMID: 39758647 PMCID: PMC11696394 DOI: 10.1021/acsomega.4c09973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration. According to DFT calculations, the initial [1,5]-hydride shift was identified as the rate-determining step of the reaction mechanism. Additionally, computational studies allowed to rationalize the differences in reactivity of various ynamides and the pivotal role of gold complexes in the catalysis of this reaction.
Collapse
Affiliation(s)
- Julien Annibaletto
- Laboratoire
de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium
| | - Clément Jacob
- Laboratoire
de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium
- Organic
Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Pierre Thilmany
- Laboratoire
de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium
| | - Anaïs Loison
- Laboratoire
de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium
| | - Jorge Escorihuela
- Departamento
de Química Orgánica, Universitat
de València, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Gwilherm Evano
- Laboratoire
de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium
- WEL
Research Institute, Avenue
Pasteur 6, Wavre 1300, Belgium
| |
Collapse
|
2
|
Yao T, Zhu R, Liu T. Synthesis of 3-aminoindenes and cis-1-aminoindanes by Zn(OTf) 2-catalyzed cyclization of o-alkynylbenzaldehydes with tertiary alkyl primary amines. Chem Commun (Camb) 2023; 59:14325-14328. [PMID: 37971424 DOI: 10.1039/d3cc04180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Using Zn(OTf)2 as catalyst, a highly regio- and chemo-selective cyclocarboamination of o-alkynylbenzaldehydes with tertiary alkyl primary amines was realized to access 3-aminoindenes with different substitution patterns from previously reported methods. The full reduction of the iminoindenone intermediates affords cis-1-amino-2-arylindanes with excellent diastereoselectivity. Mechanistically, the reaction involves the rearrangement of 1-amino-3-arylidene-isoindolines and isomerization of 1-aminoindenes to 3-aminoindenes.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Rui Zhu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Tao Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
3
|
Wu H, Gui J, Sun M, Ma Y, Yang J, Wang Z. Palladium-Catalyzed C-H Allylation/Annulation Reaction of Amides and Allylic Alcohols: Regioselective Construction of Vinyl-Substituted 3,4-Dihydroisoquinolones. J Org Chem 2023; 88:3871-3882. [PMID: 36864592 DOI: 10.1021/acs.joc.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A palladium-catalyzed highly regioselective C-H allylation/annulation reaction of N-sulfonyl amides with secondary or tertiary allylic alcohols has been developed to construct 3,4-dihydroisoquinolones bearing a synthetically valuable vinyl substituent. This cascade cyclization approach of allylic alcohols involving C-H allylation has not been reported previously. The commercially available allylic alcohol substrates, the only by-product of water, and the used terminal oxidant of O2 provide environmentally benign advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
4
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
5
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Huang X, Xu Y, Li J, Lai R, Luo Y, Wang Q, Yang Z, Wu Y. Synthesis of aminoisoquinolines via Rh-catalyzed [4 + 2] annulation of benzamidamides with vinylene carbonate. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Mihara G, Noguchi T, Nishii Y, Hayashi Y, Kawauchi S, Miura M. Rhodium-Catalyzed Annulative Coupling of Isothiazoles with Alkynes through N-S Bond Cleavage. Org Lett 2019; 22:661-665. [PMID: 31886679 DOI: 10.1021/acs.orglett.9b04437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Rh(III)-catalyzed annulative coupling of 3,5-diarylisothiazoles and alkynes is reported. The N-S bond in the isothiazole ring acts as an internal oxidant to regenerate the Rh(III) species in combination with an external Cu(II) oxidant, and the corresponding 1:2 coupling products are obtained. The remarkable difference in the reaction outcome between isothiazoles and the relevant isoxazoles has been investigated by DFT calculations, revealing that the relative stability of the enolate intermediates dictates the product selectivity.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | | |
Collapse
|
9
|
Bian M, Ma L, Wu M, Wu L, Gao H, Yi W, Zhang C, Zhou Z. Rh(III)-Catalyzed Redox-Neutral [4+2] Annulation for Direct Assembly of 3-Acyl Isoquinolin-1(2H)-ones as Potent Antitumor Agents. Chempluschem 2019; 85:405-410. [PMID: 32118370 DOI: 10.1002/cplu.201900616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
By virtue of an efficient rhodium(III)-catalyzed redox-neutral C-H activation/ring-opening of a strained ring/[4+2] annulation cascade of N-methoxybenzamides with propargyl cycloalkanols, diverse 3-acyl isoquinolin-1(2H)-ones were directly obtained in good yields and with excellent functional group compatibility. Additionally, their antitumor activities against various human cancer cells including HepG2, A549, MCF-7 and SH-SY5Y were evaluated and the action mechanism of the selected compound was also investigated in vitro. The results revealed that these products possessed a potent efficacy, by inhibiting proliferation and inducing apoptosis in a time-dependent and dose-dependent manner, suggesting that such compounds can serve as promising candidates for anti lung cancer drug discovery.
Collapse
Affiliation(s)
- Mengyao Bian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Liexin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Chao Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| |
Collapse
|
10
|
Mei YL, Zhou W, Huo T, Zhou FS, Xue J, Zhang GY, Ren BT, Zhong C, Deng QH. Rhodium-Catalyzed Successive C-H Bond Functionalizations To Synthesize Complex Indenols Bearing a Benzofuran Unit. Org Lett 2019; 21:9598-9602. [PMID: 31763857 DOI: 10.1021/acs.orglett.9b03766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient rhodium-catalyzed redox-neutral annulations of N-phenoxyacetamides and ynones via successive double C-H bond activations has been developed. A series of novel and complex indenols bearing a benzofuran unit were generated with moderate to excellent regioselecetivities under mild conditions. Adding N-ethylcyclohexanamine (CyNHEt) could restrict the formation of the mono C-H bond activation byproduct, which is not the intermediate of the reaction demonstrated via the mechanistic investigations.
Collapse
Affiliation(s)
- Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Jing Xue
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Guang-Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Bing-Tao Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Cheng Zhong
- College of Chemistry and Molecular Sciences , Wuhan University , 199 Bayi Road , Wuhan , Hubei 430072 , China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
11
|
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Dina Scarpi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| |
Collapse
|
12
|
Singh D, Kumar GS, Kapur M. Oxazolinyl-Assisted Ru(II)-Catalyzed C–H Allylation with Allyl Alcohols and Synthesis of 4-Methyleneisochroman-1-ones. J Org Chem 2019; 84:12881-12892. [DOI: 10.1021/acs.joc.9b01536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
13
|
Li Y, Liu XY, Xu YJ, Dong L. Rhodium(iii)-catalyzed tandem annulation reaction to build polycyclic benzothiazine derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00579j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient rhodium(iii)-catalyzed C–H bond functionalization to construct polycyclic benzothiazine derivatives has been well developed.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Xin-Yang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan-Jun Xu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|