1
|
Bankura A, Ghosh S, Biswas S, Das I. Convergent Paired Electrolysis for [3+2] Cycloaddition of Azidotrimethylsilane with N-Heterocycles. CHEMSUSCHEM 2024; 17:e202400381. [PMID: 38801175 DOI: 10.1002/cssc.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
A widely used method to obtain tetrazoles is through the azide and nitrile [3+2] cycloaddition. However, this process often involves using non-recyclable transition metals or Lewis acid catalysts and stoichiometric amounts of oxidants and additives, which reduces atom efficiency. We have discovered a convergent paired electrochemical reaction to perform this cycloaddition reaction, without the need for metal catalysts or oxidants. This tetrazolation strategy uses azidotrimethylsilane (TMSN3) and N-heterocycles in an undivided cell at a constant current. We use a mixture of CH3CN and equivalent amounts of H2O as co-solvent at room temperature. It is crucial to produce a stoichiometric amount of active hydroxyl ions through the cathodic reduction of water. Cyclic voltammetry (CV) studies and control experiments confirm that the cycloaddition reaction is specific to the electrode electron transfer process, eliminating the need for a mediator to shuttle electrons. This metal- and oxidant-free strategy is highly compatible with different functional groups and produces products with moderate to good yields. We have successfully tetrazolated bioactive compounds at a late stage, scaled up batches efficiently, and synthesized free amino-containing N-heterocycles via denitrogenation of tetrazoles.
Collapse
Affiliation(s)
- Abhijit Bankura
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata, 700032, India
| | - Subhadeep Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Biswas
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Niu C, Yang J, Yan K, Su Z, Li B, Wen J. A General Radical Functionalization of Quinoxalin-2(1 H)-ones via a Donor-Acceptor Inversion Strategy. J Org Chem 2024; 89:13284-13295. [PMID: 39196991 DOI: 10.1021/acs.joc.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The radical donor-acceptor inversion strategy represents a highly promising approach in the field of radical chemistry. The present study initially describes a metal-free, versatile, and modular approach for the radical functionalization of quinoxalin-2(1H)-ones via a strategy of radical donor-acceptor inversion under simple reaction conditions. More than 66 examples were provided in moderate yields. The mechanistic study has confirmed that the driving force behind this radical reaction is the in situ formation of a salt through the interaction between quinoxalin-2(1H)-ones and acid/HFIP, which exhibits potent oxidation properties. Additionally, it has been observed that the evident hydrogen bonding between quinoxalin-2(1H)-ones and HFIP can effectively mitigate the oxidation potential.
Collapse
Affiliation(s)
- Cong Niu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Zhenda Su
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
3
|
Lu Y, Li M, Feng Q, Zhang Z, Zhang Z, Lu K, Liu Z, Zhao X. Visible-light-induced tandem reaction of quinoxalin-2(1 H)-ones, alkenes, and sulfonyl chlorides. Org Biomol Chem 2024; 22:6799-6809. [PMID: 39105651 DOI: 10.1039/d4ob00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A visible-light-induced tandem reaction involving quinoxalin-2(1H)-ones, alkenes, and sulfonyl chlorides, catalyzed by 4CzIPN, was developed. The utilization of easily accessible sulfonyl chlorides, metal-free conditions, and a wide substrate scope established this protocol as an efficient and alternative method for obtaining sulfonated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Yaru Lu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Meng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Qianqian Feng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Ziqin Zhang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Zhenting Zhang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457
| | - Zhengyu Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| |
Collapse
|
4
|
Singh N, Sharma A, Singh J, Pandey AP, Sharma A. Visible Light-Induced Electron-Donor-Acceptor-Mediated C-3 Coupling of Quinoxalin-2(1 H)-ones with Unactivated Aryl Iodides. Org Lett 2024; 26:6471-6476. [PMID: 39042831 DOI: 10.1021/acs.orglett.4c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible light-induced C-3 arylation of quinoxalin-2(1H)-ones with abundantly available aryl iodides with good yields via an electron-donor-acceptor (EDA)-complex formation have been accomplished. The radical scavenging, Electron paramagnetic resonance (EPR), UV-visible experiments, density functional theory (DFT), and quantum yield studies revealed that the reaction went through a radical pathway via a single electron transfer (SET) process. Furthermore, the protocol could also be applied to the synthesis of biologically active molecules, illustrating the practicality of the present protocol.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amar Prakash Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Jiao H, Jing Y, Niu K, Song H, Liu Y, Wang Q. Photoinduced Dehydrogenative Amination of Quinoxalin-2(1 H)-ones with Air as an Oxidant. J Org Chem 2024; 89:5371-5381. [PMID: 38551317 DOI: 10.1021/acs.joc.3c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A facile and eco-friendly photoinduced dehydrogenative amination of quinoxalin-2(1H)-ones with aliphatic amines without any metal, strong oxidant, and photocatalyst has been established for the first time. This reaction proceeding efficiently with air as the sole oxidant at room temperature obtains a wide range of 3-aminoquinoxaline-2(1H)-ones in high yields with excellent functional group tolerance. The mechanistic studies show an interesting involvement of quinoxalin-2(1H)-ones as a photosensitizer, which eliminates the requirement for external photocatalysts.
Collapse
Affiliation(s)
- Haoran Jiao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
6
|
Boosani CS, Burela L. The Exacerbating Effects of the Tumor Necrosis Factor in Cardiovascular Stenosis: Intimal Hyperplasia. Cancers (Basel) 2024; 16:1435. [PMID: 38611112 PMCID: PMC11010976 DOI: 10.3390/cancers16071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
TNF-α functions as a master regulator of inflammation, and it plays a prominent role in several immunological diseases. By promoting important cellular mechanisms, such as cell proliferation, migration, and phenotype switch, TNF-α induces its exacerbating effects, which are the underlying cause of many proliferative diseases such as cancer and cardiovascular disease. TNF-α primarily alters the immune component of the disease, which subsequently affects normal functioning of the cells. Monoclonal antibodies and synthetic drugs that can target TNF-α and impair its effects have been developed and are currently used in the treatment of a few select human diseases. Vascular restenosis is a proliferative disorder that is initiated by immunological mechanisms. In this review, the role of TNF-α in exacerbating restenosis resulting from neointimal hyperplasia, as well as molecular mechanisms and cellular processes affected or induced by TNF-α, are discussed. As TNF-α-targeting drugs are currently not approved for the treatment of restenosis, the summation of the topics discussed here is anticipated to provide information that can emphasize on the use of TNF-α-targeting drug candidates to prevent vascular restenosis.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Somatic Cell and Genome Editing Center, Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- MU HealthCare, University of Missouri, Columbia, MO 65211, USA
- Technology and Platform Development, Soma Life Science Solutions, Winston-Salem, NC 27103, USA
| | | |
Collapse
|
7
|
Yang Q, Hu Y, Kong X, Lei YZ. Copper-Catalyzed, Regioselective, Unsymmetrical Homocoupling of Quinoxalin-2(1 H)-ones to Form C-N Homodimers. J Org Chem 2023; 88:14274-14282. [PMID: 37774417 DOI: 10.1021/acs.joc.3c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
An environmentally benign and efficient method for the synthesis of unsymmetrical diquinoxalin-2(1H)-ones with potential axial chirality via inexpensive copper-catalyzed, low-toxicity, and stable PIFA oxidation, rarely assisted by PhSeSePh, regioselective homocoupling of quinoxalin-2(1H)-ones under mild conditions is developed. This practical scheme is compatible with a variety of functional groups and allows the preparation of functionalized unsymmetrical dimeric quinoxalin-2(1H)-ones from readily available and safe starting materials, providing new ideas for the sustainable development of methodological studies of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Qiming Yang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China
| | - Yueyue Hu
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yi-Zhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China
| |
Collapse
|
8
|
Yang Q, Wang B, Wu M, Lei YZ. Recent Developments in Direct C–H Functionalization of Quinoxalin-2(1H)-Ones via Multi-Component Tandem Reactions. Molecules 2023; 28:molecules28062513. [PMID: 36985484 PMCID: PMC10052782 DOI: 10.3390/molecules28062513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The direct C–H multifunctionalization of quinoxalin-2(1H)-ones via multicomponent reactions has attracted considerable interest due to their diverse biological activities and chemical profile. This review will focus on recent achievements. It mainly covers reaction methods for the simultaneous introduction of C–C bonds and C–RF/C/O/N/Cl/S/D bonds into quinoxalin-2(1H)-ones and their reaction mechanisms. Meanwhile, future developments of multi-component reactions of quinoxalin-2(1H)-ones are envisaged, such as the simultaneous construction of C–C and C–B/SI/P/F/I/SE bonds through multi-component reactions; the construction of fused ring and macrocyclic compounds; asymmetric synthesis; green chemistry; bionic structures and other fields. The aim is to enrich the methods for the reaction of quinoxalin-2(1H)-ones at the C3 position, which have rich applications in materials chemistry and pharmaceutical pharmacology.
Collapse
Affiliation(s)
- Qiming Yang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (Q.Y.); (Y.-Z.L.)
| | - Biao Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Mian Wu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yi-Zhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Correspondence: (Q.Y.); (Y.-Z.L.)
| |
Collapse
|
9
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Sharma S, Bhuyan M, Baishya G. K
2
S
2
O
8
Mediated Three‐component Radical Cascade C3 Alkylation of Quinoxalin‐2(1
H
)‐ones with Vinylarenes and 4‐Hydroxycoumarins/4‐Hydroxy‐6‐methyl‐2‐pyrone. ChemistrySelect 2022. [DOI: 10.1002/slct.202201541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suraj Sharma
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Mayurakhi Bhuyan
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
11
|
Zhang L, Zheng K, Zhang P, Jiang M, Shen J, Chen C, Shen C. Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin-2(1H)-ones without external photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
12
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
13
|
Wang L, Li L, Gao Y, Mingli S, Liu J, Li P. Visible‐light‐induced site‐selective difunctionalization of 2,3‐dihydrofuran with quinoxalin‐2(1H)‐ones and peroxides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- Huaibei Normal University Chemistry 100 Dongshan Road 235000 Huaibei CHINA
| | - Laiqiang Li
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Sun Mingli
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Pinhua Li
- Huaibei Normal University Chemistry Huaibei CHINA
| |
Collapse
|
14
|
Zhang H, Xu J, Ouyang Y, Yue X, Zhou C, Ni Z, Li W. Molecular oxygen-mediated selective hydroxyalkylation and alkylation of quinoxalin-2(1H)-ones with alkylboronic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Yuan YR, Li L, Bu X, Wang X, Sun R, Zhou MD, Wang H. Visible‐Light Photoredox‐Catalyzed Three‐Component Difluoromethylative Heteroarylation of Unactivated Alkenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ya-Ru Yuan
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Lei Li
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Xiubin Bu
- Shenyang Normal University Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering CHINA
| | - Xin Wang
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ran Sun
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ming-Dong Zhou
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - He Wang
- Liaoning Shihua University School of Chemistry and Materials Science Dandong road 1, Wanghua District 113001 Fushun CHINA
| |
Collapse
|
16
|
Yang G, Xiong Z, Nie H, He M, Feng Q, Li X, Huang H, Wang S, Ji F, Jiang G. Copper-Catalyzed Divergent C–H Functionalization Reaction of Quinoxalin-2(1 H)-ones and Alkynes Controlled by N1-Substituents for the Synthesis of ( Z)-Enaminones and Furo[2,3- b]quinoxalines. Org Lett 2022; 24:1859-1864. [DOI: 10.1021/acs.orglett.2c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guang Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Meiqin He
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Qiong Feng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Huabin Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| |
Collapse
|
17
|
Yuan X, Si YF, Li X, Wu S, Zeng FL, Lv QY, Yu B. Decatungstate-Photocatalyzed Direct Coupling of Inert Alkanes and Quinoxalin-2(1H)-ones with H2 Evolution. Org Chem Front 2022. [DOI: 10.1039/d1qo01894a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetrabutylammonium decatungstate (TBADT)-photocatalyzed direct coupling of inert alkanes and quinoxalin-2(1H)-ones with H2 evolution was developed at room temperature. The present transformation achieved the direct C(sp3)-H/C(sp2)-H coupling under noble metal-free,...
Collapse
|
18
|
Yao Z, Zhang X, Luo Z, Pan Y, Zhao H, Li B, Xu L, Shi Q, Fan Q. Na
2
S
2
O
8
‐Mediated Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐ones with 4‐Alkyl‐1,4‐dihydropyridines as Alkyl Radical Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Jiang X, Du X, Chen K, Han H, Xu D, Zhu B, Jiang L, Fang L, Yu C. Metal-free C3 α-aminoalkylation of quinoxalin-2(1H)-ones with amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Pei C, Chen X, Li L, Li J, Zou D, Wu Y, Wu Y. Copper-catalyzed C3-amination of quinoxalin-2(1H)-ones: Using Selectfluor as a mild oxidant. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Zhang HY, Chen J, Lu CC, Han YP, Zhang Y, Zhao J. Visible-Light-Induced C(sp 2)-C(sp 3) Cross-Dehydrogenative-Coupling Reaction of N-Heterocycles with N-Alkyl- N-methylanilines under Mild Conditions. J Org Chem 2021; 86:11723-11735. [PMID: 34369160 DOI: 10.1021/acs.joc.1c01207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disclosed herein is a cross-dehydrogenative-coupling reaction of N-heterocycles including 1,2,4-triazine-3,5(2H, 4H)-diones and quinoxaline-2(1H)-ones with N-methylanilines to form C(sp2)-C(sp3) under visible-light illumination and ambient air at room temperature. In this process, easily available Ru(bpy)3Cl2·6H2O serves as the catalyst, and air acts as the green oxidant. This method features high atom economy, environmental friendliness, and convenient operation and provides an efficient and practical access to aminomethyl-substituted N-heterocycles with extensive functional group compatibility in 40-86% yields.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jianjun Chen
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Cong-Cong Lu
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
23
|
Zhang Y, Luo H, Ma H, Wan J, Ji Y, Shaginian A, Li J, Deng Y, Liu G. On-DNA Derivatization of Quinoxalin-2-ones by Visible-Light-Triggered Alkylation with Carboxylic Acids. Bioconjug Chem 2021; 32:1576-1580. [PMID: 34346691 DOI: 10.1021/acs.bioconjchem.1c00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient visible-light-induced alkylation of DNA-tagged quinoxaline-2-ones was described. The methodology demonstrated moderate-to-excellent conversions under mild conditions. The reaction was found to be tolerant with both N-protected α-amino acids and aliphatic carboxylic acids and could be applied to the synthesis of focused DNA-encoded quinoxalin-2-one libraries.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Huadong Luo
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Huiyong Ma
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Yue Ji
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| |
Collapse
|
24
|
Visible-light induced direct C-H difluoromethylation of quinoxalin-2(1H)-ones by [bis(difluoroacetoxy)iodo]benzene under catalysis-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Copper-mediated ortho C H primary amination of anilines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
27
|
Bao H, Lin Z, Jin M, Zhang H, Xu J, Chen B, Li W. Visible-light-induced C H arylation of quinoxalin-2(1H)-ones in H2O. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
|
29
|
Meng N, Lv Y, Liu Q, Liu R, Zhao X, Wei W. Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Xu J, Yang H, He L, Huang L, Shen J, Li W, Zhang P. Synthesis of ( E)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Org Lett 2020; 23:195-201. [PMID: 33354970 DOI: 10.1021/acs.orglett.0c03918] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a novel method for the gram-scale synthesis of (E)-quinoxalinone oximes through a multicomponent reaction under mild conditions is described. Such a transformation was performed under transition-metal-free conditions, affording (E)-oximes in a moderate-to-good yield through recrystallization. Our methodology demonstrates a successful combination of a Mannich-type reaction and radical coupling, providing a green and practical approach for the synthesis of potentially bioactive quinoxalinone-containing molecules.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
31
|
Direct Introduction of Sulfonamide Groups into Quinoxalin‐2(1
H
)‐ones by Cu‐Catalyzed C3‐H Functionalization. Chem Asian J 2020; 15:3365-3369. [DOI: 10.1002/asia.202000916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/14/2022]
|
32
|
Sun M, Wang L, Zhao L, Wang Z, Li P. Visible‐Light Photoredox Catalyzed C−N Coupling of Quinoxaline‐2(1
H
)‐ones with Azoles without External Photosensitizer. ChemCatChem 2020. [DOI: 10.1002/cctc.202000459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Lulu Zhao
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Pinhua Li
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
33
|
Si YF, Sun K, Chen XL, Fu XY, Liu Y, Zeng FL, Shi T, Qu LB, Yu B. Arylaminomethyl Radical-Initiated Cascade Annulation Reaction of Quinoxalin-2(1H)-ones Catalyzed by Recyclable Photocatalyst Perovskite. Org Lett 2020; 22:6960-6965. [DOI: 10.1021/acs.orglett.0c02518] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ya-Feng Si
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Xiao-Yang Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
C(sp2)–H/O–H cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with alcohols under visible-light photoredox catalysis. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63526-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Meng N, Wang L, Liu Q, Li Q, Lv Y, Yue H, Wang X, Wei W. Metal-Free Trifluoroalkylation of Quinoxalin-2(1H)-ones with Unactivated Alkenes and Langlois’ Reagent. J Org Chem 2020; 85:6888-6896. [DOI: 10.1021/acs.joc.9b03505] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Leilei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qishun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qinyu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Huilan Yue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaojuan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| |
Collapse
|
36
|
Gao Y, Zhao L, Xiang T, Li P, Wang L. Photoinitiated decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 H)-ones with potassium 2,2-difluoro-2-arylacetates in water. RSC Adv 2020; 10:10559-10568. [PMID: 35492892 PMCID: PMC9050393 DOI: 10.1039/d0ra02059a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
An efficient and green strategy for the preparation of C3-difluoroarylmethylated quinoxalin-2(1H)-one via a visible-light-induced decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1H)-one with potassium 2,2-difluoro-2-arylacetate in water at room temperature was developed. This photoinduced reaction generated the desired products in good yields under simple and mild conditions.
Collapse
Affiliation(s)
- Yanhui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lulu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Tianyi Xiang
- College of Pharmacy, Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
- Department of Chemistry, Advanced Research Institute, Taizhou University Taizhou Zhejiang 318000 P. R. China
| |
Collapse
|
37
|
Rong X, Jin L, Gu Y, Liang G, Xia Q. Transition‐Metal‐Free Radical C−H Methylation of Quinoxalinones with TBHP. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaona Rong
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 P. R. China
| | - Liujun Jin
- Chemical Biology Research Center School of Pharmaceutical SciencesWenzhou Medical University Wenzhou 325035 P. R. China
| | - Yugui Gu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 P. R. China
| | - Guang Liang
- Chemical Biology Research Center School of Pharmaceutical SciencesWenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- Chemical Biology Research Center School of Pharmaceutical SciencesWenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
38
|
Xu X, Xia C, Li X, Sun J, Hao L. Visible-light-induced aerobic C3-H fluoroalkoxylation of quinoxalin-2(1 H)-ones with fluoroalkyl alcohols. RSC Adv 2020; 10:2016-2026. [PMID: 35494590 PMCID: PMC9047172 DOI: 10.1039/c9ra10194b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023] Open
Abstract
A novel and efficient method of visible-light-induced C3-H fluoroalkoxylation of quinoxalin-2(1H)-ones with fluoroalkyl alcohols is developed. This approach uses readily available fluoroalkyl alcohols as fluoroalkoxylation reagents and displays a wide substrate scope, providing the fluoroalkoxylated products in moderate to good yields. Compared with the previous method, such a transformation uses oxygen as an oxidant, which avoids the utilization of plenty of PhI(TFA)2. In addition, this strategy also gives a practical tool for the rapid synthesis of histamine-4 receptor antagonist and new N-containing bidentate ligands. A radical mechanism was suggested according to the results of control experiments.
Collapse
Affiliation(s)
- Xiaobo Xu
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
- Shanghai Synmedia Chemical Co., Ltd Shanghai 201201 China
| | - Chengcai Xia
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University Xinyu 338004 China
| | - Jian Sun
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| | - Liqiang Hao
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| |
Collapse
|
39
|
Yuan JW, Zhu JL, Zhu HL, Peng F, Yang LY, Mao P, Zhang SR, Li YC, Qu LB. Transition-metal free direct C–H functionalization of quinoxalin-2(1H)-ones with oxamic acids leading to 3-carbamoyl quinoxalin-2(1H)-ones. Org Chem Front 2020. [DOI: 10.1039/c9qo01322a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical transition-metal free decarboxylative coupling reaction of oxamic acids with quinoxalin-2(1H)-ones has been developed under mild conditions.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Fang Peng
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Liang-Yu Yang
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou 450006
- China
| | - Yan-Chun Li
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou 450006
- China
| | - Ling-Bo Qu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
40
|
Bao P, Liu F, Lv Y, Yue H, Li JS, Wei W. Visible-light-promoted acridine red catalyzed aerobic oxidative decarboxylative acylation of α-oxo-carboxylic acids with quinoxalin-2(1H)-ones. Org Chem Front 2020. [DOI: 10.1039/c9qo01334b] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Visible-light-mediated procedure has been developed for the synthesis of 3-acyl quinoxalin-2(1H)-ones through acridine red catalyzed decarboxylative acylation of α-oxo-carboxylic acids with quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Pengli Bao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165, Shandong
- China
| | - Fei Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165, Shandong
- China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165, Shandong
- China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Qinghai 810008
- China
| | - Jiang-Sheng Li
- School of Chemistry and Food Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Wei Wei
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165, Shandong
- China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research
| |
Collapse
|
41
|
Sharma S, Dutta NB, Bhuyan M, Das B, Baishya G. tert-Butylhydroperoxide (TBHP) mediated oxidative cross-dehydrogenative coupling of quinoxalin-2(1 H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone and 2-hydroxy-1,4-naphthoquinone under metal-free conditions. Org Biomol Chem 2020; 18:6537-6548. [PMID: 32789325 DOI: 10.1039/d0ob01304h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report an efficient and atom-economical method of C-3 functionalization of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone, and 2-hydroxy-1,4-naphthoquinone via the free radical cross-coupling pathway under metal-free conditions. tert-Butylhydroperoxide (TBHP) smoothly promotes the reaction furnishing the cross-dehydrogenative coupling (CDC) products in very good to excellent yields. The protocol neither uses any toxic reagents nor metal catalysts to carry out the reaction, and all the products have been obtained without column chromatography purification. Different radical trapping experiments with 2,2,6,6-tetramethylpiperidine-1-oxyl, butylated hydroxytoluene, and diphenyl ethylene confirm the involvement of radicals.
Collapse
Affiliation(s)
- Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Nibedita Baruah Dutta
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India and Rain Forest Research Institute, Jorhat-785001, India
| | - Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
42
|
Ke Q, Yan G, Yu J, Wu X. Recent advances in the direct functionalization of quinoxalin-2(1H)-ones. Org Biomol Chem 2019; 17:5863-5881. [PMID: 31157814 DOI: 10.1039/c9ob00782b] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The direct C3-functionalization of quinoxalin-2(1H)-ones via C-H bond activation has recently attracted considerable attention, due to their diverse biological activities and chemical properties. This review will focus on the recent achievements, mainly including arylation, alkylation, acylation, alkoxycarbonylation, amination, amidation and phosphonation of quinoxalin-2(1H)-ones. Their mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiumin Ke
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | | | | | | |
Collapse
|
43
|
Shen J, Xu J, Huang L, Zhu Q, Zhang P. Hypervalent Iodine(III)‐Promoted Rapid Cascade Reaction of Quinoxalinones with Unactivated Alkenes and TMSN
3. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901314] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Jun Xu
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Lin Huang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| |
Collapse
|
44
|
Peng S, Hu D, Hu J, Lin Y, Tang S, Tang H, He J, Cao Z, He W. Metal‐Free C3 Hydroxylation of Quinoxalin‐2(1
H
)‐ones in Water. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sha Peng
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Die Hu
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Jia‐Li Hu
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang 421001 People's Republic of China
| | - Shan‐Shan Tang
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Hai‐Shan Tang
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Jun‐Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Wei‐Min He
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| |
Collapse
|
45
|
Tian M, Liu S, Bu X, Yu J, Yang X. Covalent Organic Frameworks: A Sustainable Photocatalyst toward Visible-Light-Accelerated C3 Arylation and Alkylation of Quinoxalin-2(1H)-ones. Chemistry 2019; 26:369-373. [PMID: 31595996 DOI: 10.1002/chem.201903523] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/20/2022]
Abstract
A practical and scalable protocol for visible-light-accelerated arylation and alkylation of quinoxalin-2(1H)-ones with hydrazines is reported. In this protocol, a hydrazone-based two-dimensional covalent organic frameworks (2D-COF-1) was employed as the heterogeneous photocatalyst (PC). Due to its excellent photocatalytic properties, good chemical stability and heterogeneous nature, the present method exhibits high efficiency, good functional group tolerance, easy scalability and remarkable catalyst reusability. More importantly, it provides an alternative way that allows rapid access to various C3 arylated or alkylated quinoxalin-2(1H)-ones in a greener and sustainable manner.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| |
Collapse
|
46
|
Sekhar Dutta H, Ahmad A, Khan AA, Kumar M, Raziullah, Koley D. Metal Free Benzylation and Alkylation of Quinoxalin‐2(1
H
)‐ones with Alkenes Triggered by Sulfonyl Radical Generated from Sulfinic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Raziullah
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
47
|
Zhou J, Zhou P, Zhao T, Ren Q, Li J. (Thio)etherification of Quinoxalinones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Peng Zhou
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tingting Zhao
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Quanlei Ren
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jianjun Li
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
48
|
Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Visible Light‐Induced Photocatalytic C−H Perfluoroalkylation of Quinoxalinones under Aerobic Oxidation Condition. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenjiang Wei
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Sijia Qi
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Yanhao Xu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hao Liu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Junzhen Wu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hongshuang Li
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Chengcai Xia
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Guiyun Duan
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| |
Collapse
|
49
|
Wang L, Zhao J, Sun Y, Zhang HY, Zhang Y. A Catalyst-Free Minisci-Type Reaction: the C-H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liping Wang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuting Sun
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| |
Collapse
|
50
|
Zhao L, Wang L, Gao Y, Wang Z, Li P. Visible‐Light‐Induced Alkoxylation of Quinoxalin‐2(1
H
)‐ones with Alcohols for the Synthesis of Heteroaryl Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900732] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lulu Zhao
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 People's Republic of China
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Lei Wang
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 People's Republic of China
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| | - Yanhui Gao
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 People's Republic of China
| | - Zhiming Wang
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 People's Republic of China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| | - Pinhua Li
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| |
Collapse
|