1
|
Karmakar I, Brahmachari G. Electrorearranged Difunctionalization of 4-Hydroxy-α-benzopyrones. J Org Chem 2024; 89:10524-10537. [PMID: 39028998 DOI: 10.1021/acs.joc.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We herein report the exploration of an electrosynthetic strategy as a highly efficient and straightforward alternative protocol for accessing diversely substituted and biologically promising alkyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates through an electrorearranged difunctionalization of 4-hydroxycoumarins, involving the singlet oxygen insertion from molecular oxygen, at ambient temperature. The present method is notably more advantageous than the previously reported photochemical conversion regarding yields and reaction times, substrate scope and functional group tolerability, operational simplicity, and scalability.
Collapse
Affiliation(s)
- Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
2
|
Mondal K, Ghosh P, Hajra A. An Electrochemical Oxo-amination of 2H-Indazoles: Synthesis of Symmetrical and Unsymmetrical Indazolylindazolones. Chemistry 2024; 30:e202303890. [PMID: 38147010 DOI: 10.1002/chem.202303890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
We have established a supporting-electrolyte free electrochemical method for the synthesis of indazolylindazolones through oxygen reduction reaction (eORR) induced 1,3-oxo-amination of 2H-indazoles where 2H-indazole is used as both aminating agent as well as the precursor of indazolone. Moreover, we have merged indazolone and indazole to get unsymmetrical indazolylindazolones through direct electrochemical cross-dehydrogenative coupling (CDC). This exogenous metal-, oxidant- and catalyst-free protocol delivered a number of multi-functionalized products with high tolerance of diverse functional groups.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
3
|
Bityukov OV, Skokova KV, Vil' VA, Nikishin GI, Terent'ev AO. Electrochemical Generation of Peroxy Radicals and Subsequent Peroxidation of 1,3-Dicarbonyls in an Undivided Cell. Org Lett 2024; 26:166-171. [PMID: 38153332 DOI: 10.1021/acs.orglett.3c03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The generation of peroxy radicals from hydroperoxides with subsequent selective peroxidation of 1,3-dicarbonyls in an undivided electrochemical cell under constant current conditions is reported. The method provides a variety of peroxy-containing barbituric acids and 4-hydroxy-2(5H)-furanones with yields of up to 74%. Only the combination of anodic and cathodic processes provides efficient peroxidation by generating a set of alkoxy and peroxy radicals. NaNO3 acts as both an electrolyte and a redox mediator of radical reactions.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Ksenia V Skokova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| |
Collapse
|
4
|
Neerathilingam N, Prabhu S, Anandhan R. A facile synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxidation by an electrochemical oxygen reduction reaction. Org Biomol Chem 2023; 21:7707-7711. [PMID: 37702002 DOI: 10.1039/d3ob01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Electrochemical synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxygenation of isoindolinone was achieved. The α-C-H oxidation proceeded with molecular oxygen via an oxygen reduction reaction (ORR) on the cathode under electrochemical conditions. The synthetic utility of this protocol was successfully demonstrated by employing gram-scale synthesis and obtaining bioactive molecules such as thalidomide and 2-(2,6-diisopropylphenyl)-5-hydroxyisoindoline-1,3-dione. Mechanistic studies and control experiments indicate that molecular oxygen provides oxygen atoms for the reaction.
Collapse
Affiliation(s)
| | - Sakthivel Prabhu
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| |
Collapse
|
5
|
Dorchies F, Serva A, Crevel D, De Freitas J, Kostopoulos N, Robert M, Sel O, Salanne M, Grimaud A. Controlling the Hydrophilicity of the Electrochemical Interface to Modulate the Oxygen-Atom Transfer in Electrocatalytic Epoxidation Reactions. J Am Chem Soc 2022; 144:22734-22746. [PMID: 36468903 DOI: 10.1021/jacs.2c10764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The electrocatalytic epoxidation of alkenes at heterogeneous catalysts using water as the sole oxygen source is a promising safe route toward the sustainable synthesis of epoxides, which are essential building blocks in organic chemistry. However, the physicochemical parameters governing the oxygen-atom transfer to the alkene and the impact of the electrolyte structure on the epoxidation reaction are yet to be understood. Here, we study the electrocatalytic epoxidation of cyclooctene at the surface of gold in hybrid organic/aqueous mixtures using acetonitrile (ACN) solvent. Gold was selected, as in ACN/water electrolytes gold oxide is formed by reactivity with water at potentials less anodic than the oxygen evolution reaction (OER). This unique property allows us to demonstrate that a sacrificial mechanism is responsible for cyclooctene epoxidation at metallic gold surfaces, proceeding through cyclooctene activation, while epoxidation at gold oxide shares similar reaction intermediates with the OER and proceeds via the activation of water. More importantly, we show that the hydrophilicity of the electrode/electrolyte interface can be tuned by changing the nature of the supporting salt cation, hence affecting the reaction selectivity. At low overpotential, hydrophilic interfaces formed using strong Lewis acid cations are found to favor gold passivation. Instead, hydrophobic interfaces created by the use of large organic cations favor the oxidation of cyclooctene and the formation of epoxide. Our study directly demonstrates how tuning the hydrophilicity of electrochemical interfaces can improve both the yield and selectivity of anodic reactions at the surface of heterogeneous catalysts.
Collapse
Affiliation(s)
- Florian Dorchies
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231Paris Cedex 05, France.,Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France
| | - Alessandra Serva
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France.,Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France
| | - Dorian Crevel
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025Evry-Courcouronnes, France
| | - Jérémy De Freitas
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, F-75006Paris, France
| | - Nikolaos Kostopoulos
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, F-75006Paris, France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, F-75006Paris, France.,Institut Universitaire de France (IUF), 75231Paris, France
| | - Ozlem Sel
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231Paris Cedex 05, France.,Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France
| | - Mathieu Salanne
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France.,Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France.,Institut Universitaire de France (IUF), 75231Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231Paris Cedex 05, France.,Réseau sur le stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039Amiens Cedex, France.,Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| |
Collapse
|
6
|
Wang A, Liu X, Gao W, Ma L, Liu S, Zhang G, Zhou M, Jia X, Chen J. Cathode enabled high faradaic efficiency: reduction of imines to amines with H 2O as a H-source. Chem Commun (Camb) 2022; 58:9906-9909. [PMID: 35975808 DOI: 10.1039/d2cc03479d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from a high overpotential of the competitive hydrogen evolution reaction with a carbon paper cathode, the desired electrochemical reduction of imines was achieved with high faradaic efficiency by using H2O as a H-source. With this sustainable atom-economic strategy, a series of potentially versatile amines were obtained in medium-to-high yields (49-86%).
Collapse
Affiliation(s)
- Aihua Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Xin Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| |
Collapse
|
7
|
Kuzmin SM, Chulovskaya SA, Dmitrieva OA, Mamardashvili NZ, Koifman OI, Parfenyuk VI. 2H-5,10,15,20-tetrakis(3-aminophenyl)porphyrin films: Electrochemical formation and catalyst property testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Qin H, Zhang Z, Qiao K, Chen X, He W, Liu C, Yang X, Yang Z, Fang Z, Guo K. Regioselective C3-Fluoroalcoholation of Indoles with Heptafluoroisopropyl Iodide via Palladium-Catalyzed C(sp 2)–C(sp 3) Cross-Coupling in the Presence of O 2. J Org Chem 2022; 87:9128-9138. [DOI: 10.1021/acs.joc.2c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xinran Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xiaobing Yang
- China Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, P. R. China
| | - Zhao Yang
- School of Engineering Institution, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Zhuang W, Zhang J, Ma C, Wright JS, Zhang X, Ni SF, Huang Q. Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Org Lett 2022; 24:4229-4233. [PMID: 35678516 DOI: 10.1021/acs.orglett.2c01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to electrochemical oxygenation of indoles leading to isatins was developed by merging with a complementary cathode oxygen reduction reaction. The features of this green protocol include the use of molecular oxygen as the sole oxidant, it being free of an electron transfer mediator, and gram-scale preparation. Mechanistic studies suggested a radical process, and the two oxygen atoms in the isatins were both most likely from molecular oxygen. A detailed mechanism of the reaction utilizing density functional theory calculations was elucidated.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, Surrey, U.K
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
10
|
Liu S, Lu Y, Sun S, Wang H, Gao W, Wang Y, Jia X, Chen J. Electrode material promoted dehydrogenative homo-/cross-coupling of weakly activated naphthalenes. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
12
|
Ruan M, Chen L, Wen Z, Yang F, Ma C, Lu C, Yang G, Gao M. Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chem Commun (Camb) 2022; 58:2168-2171. [PMID: 35060985 DOI: 10.1039/d1cc06945d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemical oxygen reduction reaction (ORR) is a powerful tool for introducing oxygen functional groups in synthetic chemistry. However, compared with the well-developed one-electron oxygen reduction process, the applications of two-electron oxygen reduction in electrochemical synthesis have been seldom studied. We present herein our recent progress in the oxidation of α-diazoesters to α-ketoesters by in situ generated hydrogen peroxide via a two-electron oxygen reduction approach. A diverse collection of valuable α-ketoester products was obtained with moderate to high yields under an exogenous-oxidant-free and metal catalyst-free electrochemical conditions.
Collapse
Affiliation(s)
- Mengyao Ruan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Liang Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Ziyang Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Fan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Chao Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Cuifen Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Guichun Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Meng Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
13
|
Wu Y, Xu S, Wang H, Shao D, Qi Q, Lu Y, Ma L, Zhou J, Hu W, Gao W, Chen J. Directing Group Enables Electrochemical Selectively Meta-Bromination of Pyridines under Mild Conditions. J Org Chem 2021; 86:16144-16150. [PMID: 34128672 DOI: 10.1021/acs.joc.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Without the use of catalysts and oxidants, a facile and sustainable electrochemical bromination protocol was developed. By introducing the directing groups, the regioselectivity of pyridine derivatives could be controlled at the meta-position utilizing the inexpensive and safe bromine salts at room temperature. A variety of brominated pyridine derivatives were obtained in 28-95% yields, and the reaction could be readily performed at a gram scale. By combining the installation and removing the directing group, the concept of meta-bromination of pyridines could be verified.
Collapse
Affiliation(s)
- Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Shanghui Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Dongxu Shao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yi Lu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
14
|
Qin H, Yang Z, Zhang Z, Liu C, He W, Fang Z, Guo K. An Electrochemical Route for Special Oxidative Ring-Opening of Indoles. Chemistry 2021; 27:13024-13028. [PMID: 34184801 DOI: 10.1002/chem.202101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
A novel electrochemical protocol for the oxidative cleavage of indoles has been developed, which offers a simple way to access synthetically useful anthranilic acid derivatives. In undivided cells, a wide variety of indoles and alcohol compounds are examined to afford amide ester aromatics without using extra oxidants and stoichiometric metal catalysts, which avoids the formation of undesired by-products and exhibits high atom economy. The products we described in this perspective represent a synthetic intermediate in numerous drug molecules and industrial chemical reagents and remarkably show potential application in the future.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zhao Yang
- School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| |
Collapse
|
15
|
Akinoglu EM, Hoogeveen DA, Cao C, Simonov AN, Jasieniak JJ. Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS NANO 2021; 15:7860-7878. [PMID: 33891396 DOI: 10.1021/acsnano.0c10387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considering the attractive optoelectronic properties of metal halide perovskites (MHPs), their introduction to the field of photocatalysis was only a matter of time. Thus far, MHPs have been explored for the photocatalytic generation of hydrogen, carbon dioxide reduction, organic synthesis, and pollutant degradation applications. Of growing research interest and possible applied significance are the currently emerging developments of MHP-based Z-scheme heterostructures, which can potentially enable efficient photocatalysis of highly energy-demanding redox processes. In this Perspective, we discuss the advantages and limitations of MHPs compared to traditional semiconductor materials for applications as photocatalysts and describe emerging examples in the construction of MHP-based Z-scheme systems. We discuss the principles and material properties that are required for the development of such Z-scheme heterostructure photocatalysts and consider the ongoing challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Eser M Akinoglu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dijon A Hoogeveen
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Chang Cao
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandr N Simonov
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Jacek J Jasieniak
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Karaman C. Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. ELECTROANAL 2021. [DOI: 10.1002/elan.202100018] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ceren Karaman
- Akdeniz University Vocational School of Technical Sciences, Department of Electricity and Energy Antalya 07070 Turkey
| |
Collapse
|
17
|
Choi S, Park J, Yu E, Sim J, Park CM. Electrosynthesis of Dihydropyrano[4,3-b]indoles Based on a Double Oxidative [3+3] Cycloaddition. Angew Chem Int Ed Engl 2020; 59:11886-11891. [PMID: 32329937 DOI: 10.1002/anie.202003364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Oxidative [3+3] cycloadditions offer an efficient route for six-membered-ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π-electrocyclization leading to the synthesis of dihydropyrano[4,3-b]indoles and 2,3-dihydrofurans. The radical-radical cross-coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.
Collapse
Affiliation(s)
- Subin Choi
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Jinhwi Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Jeongwoo Sim
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| |
Collapse
|
18
|
Lv S, Han X, Wang JY, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020; 59:11583-11590. [PMID: 32203637 DOI: 10.1002/anie.202001510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Herein, an environmentally friendly electrochemical approach is reported that takes advantage of the captodative effect and delocalization effect to generate nitrogen-centered radicals (NCRs). By changing the reaction parameters of the electrode material and feedstock solubility, dearomatization enabled a selective dehydrogenative C-N versus N-N bond formation reaction. Hence, pyrido[1,2-a]benzimidazole and tetraarylhydrazine frameworks were prepared through a sustainable transition-metal- and exogenous oxidant-free strategy with broad generality. Bioactivity assays demonstrated that pyrido[1,2-a]benzimidazoles displayed antimicrobial activity and cytotoxicity against human cancer cells. Compound 21 exhibited good photochemical properties with a large Stokes shift (approximately 130 nm) and was successfully applied to subcellular imaging. A preliminary mechanism investigation and density functional theory (DFT) calculations revealed the possible reaction pathway.
Collapse
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
19
|
Choi S, Park J, Yu E, Sim J, Park C. Electrosynthesis of Dihydropyrano[4,3‐
b
]indoles Based on a Double Oxidative [3+3] Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Subin Choi
- Department of Chemistry UNIST (Ulsan National Institute of Science & Technology) Ulsan 44919 Korea
| | - Jinhwi Park
- Department of Chemistry UNIST (Ulsan National Institute of Science & Technology) Ulsan 44919 Korea
| | - Eunsoo Yu
- Department of Chemistry UNIST (Ulsan National Institute of Science & Technology) Ulsan 44919 Korea
| | - Jeongwoo Sim
- Department of Chemistry UNIST (Ulsan National Institute of Science & Technology) Ulsan 44919 Korea
| | - Cheol‐Min Park
- Department of Chemistry UNIST (Ulsan National Institute of Science & Technology) Ulsan 44919 Korea
| |
Collapse
|
20
|
Ranninger J, Wachs SJ, Möller J, Mayrhofer KJ, Berkes BB. On-line monitoring of dissolution processes in nonaqueous electrolytes – A case study with platinum. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Lv S, Han X, Wang J, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C−N versus N−N Bond Formation of Nitrogen‐Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jian‐Yong Wang
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
22
|
Zhang P, Li B, Niu L, Wang L, Zhang G, Jia X, Zhang G, Liu S, Ma L, Gao W, Qin D, Chen J. Scalable Electrochemical Transition‐Metal‐Free Dehydrogenative Cross‐Coupling Amination Enabled Alkaloid Clausines Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pan Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xiaofei Jia
- Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Guoying Zhang
- Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Dawei Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
23
|
|
24
|
He F, Zheng Y, Fan H, Ma D, Chen Q, Wei T, Wu W, Wu D, Hu X. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4833-4842. [PMID: 31914316 DOI: 10.1021/acsami.9b20920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of low-cost and efficient (electro)catalysts with tunable 2e/4e oxygen reduction reaction (ORR) selectivity toward energy conversion, biomimetic catalysis, and biosensing has attracted growing interest. Herein, we reported that carbon nanohybrids with O- or N-coordinated Cu (Cu-OC or Cu-NC) showed superior activity for 2e and 4e electrocatalytic ORR with selectivities of 84.0% and 97.2%, respectively. Experimental evidence demonstrated that the strong electron-rich O-doped carbon in Cu-OC donated electrons to Cu2+, weakening the binding strength of H2O2 at Cu-O centers and facilitating the 2e ORR pathway for selective production of H2O2. However, the poor electron-donor ability of the N-doped carbon in Cu-NC made Cu-N sites more electron deficient due to the reduced electron transfer from N-doped carbon to Cu2+, promoting 4e ORR by enhancing adsorption of O2 and the ORR intermediates. The high 4e ORR activity of Cu-NC rendered its potential for application in a Zn-air battery and oxidase-mimicking activity for 3,3',5,5'-tetramethylbenzidine (TMB) and ascorbic acid (AA) oxidation. The maximal velocity (Vmax) of TMB and AA oxidation over Cu-NC was higher than some natural oxidases and noble-metal-based artificial enzymes. The lower activation energy for AA oxidation over Cu-NC resulted in a 263-fold higher oxidative rate than TMB, further prompting nonenzymatic sensing of AA by the competitive oxidation strategy.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Yan Zheng
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Huailin Fan
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Delong Ma
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qifeng Chen
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Tao Wei
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Weibing Wu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|
25
|
Lai YL, Mo Y, Yan S, Zhang S, Zhu L, Luo J, Guo H, Cai J, Liao J. Electrochemical sulfonylation of alkenes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of (E)-vinyl sulfones in water. RSC Adv 2020; 10:33155-33160. [PMID: 35515034 PMCID: PMC9056656 DOI: 10.1039/d0ra07212e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 01/03/2023] Open
Abstract
An electrochemical sulfonylation of alkenes with sulfonyl hydrazides for the synthesis of (E)-vinyl sulfones in water is reported.
Collapse
Affiliation(s)
- Yin-Long Lai
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Yunyan Mo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Shaoxi Yan
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Shengling Zhang
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Lejie Zhu
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianmin Luo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Huishi Guo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianpeng Cai
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| |
Collapse
|
26
|
He TJ, Zhong WQ, Huang JM. The synthesis of sulfonated 4H-3,1-benzoxazines via an electro-chemical radical cascade cyclization. Chem Commun (Camb) 2020; 56:2735-2738. [DOI: 10.1039/c9cc09551a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We achieved sulfonated 4H-3,1-benzoxazines under ambient conditions without any metals and external chemical oxidants via electrochemical radical cascade cyclizations.
Collapse
Affiliation(s)
- Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
27
|
Lv S, Zhang G, Chen J, Gao W. Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900750] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
28
|
Gong F, Lu F, Zuo L, Wang Q, Li R, Hu J, Li Z, Takfaoui A, Lei A. Efficient electrosynthesis of sulfinic esters via oxidative cross‐coupling between alcohols and thiophenols. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Fengping Gong
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Fangling Lu
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Lin Zuo
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Qi Wang
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Ru Li
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Jiaxin Hu
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Zhen Li
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
| | - Abdelilah Takfaoui
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis Nanchang 330022 P. R. China
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
29
|
Tian S, Jia X, Wang L, Li B, Liu S, Ma L, Gao W, Wei Y, Chen J. The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes via the oxygen reduction reaction. Chem Commun (Camb) 2019; 55:12104-12107. [DOI: 10.1039/c9cc06746a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is the electrochemical engendering of chlorine radicals by a manganese catalyst with a controllable pattern, and inexpensive MgCl2 as the chlorine source.
Collapse
Affiliation(s)
- Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| |
Collapse
|