1
|
Li Q, Wang H, Zhang W, Wang W, Ren X, Wu M, Shi G. Structure-Guided Evolution Modulate Alcohol Oxidase to Improve Ethanol Oxidation Performance. Appl Biochem Biotechnol 2024; 196:1948-1965. [PMID: 37453026 DOI: 10.1007/s12010-023-04626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiou Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Wenxiao Zhang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenxuan Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyu Ren
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengyao Wu
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
2
|
Dolz M, Monterrey DT, Beltrán-Nogal A, Menés-Rubio A, Keser M, González-Pérez D, de Santos PG, Viña-González J, Alcalde M. The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution. Methods Enzymol 2023; 693:73-109. [PMID: 37977739 DOI: 10.1016/bs.mie.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) are arising as versatile biocatalysts for C-H oxyfunctionalization reactions. In recent years, several directed evolution studies have been conducted to design improved UPO variants. An essential part of this protein engineering strategy is the design of reliable colorimetric high-throughput screening (HTS) assays for mutant library exploration. Here, we present a palette of 12 colorimetric HTS assays along with their step-by-step protocols, which have been validated for directed UPO evolution campaigns. This array of colorimetric assays will pave the way for the discovery and design of new UPO variants.
Collapse
Affiliation(s)
- Mikel Dolz
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Dianelis T Monterrey
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Alejandro Beltrán-Nogal
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Andrea Menés-Rubio
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Merve Keser
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - David González-Pérez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | | | - Javier Viña-González
- EvoEnzyme S.L., C/ Faraday 7. Parque Científico de Madrid, Cantoblanco, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain.
| |
Collapse
|
3
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
4
|
Heath RS, Sangster JJ, Turner NJ. An Engineered Cholesterol Oxidase Catalyses Enantioselective Oxidation of Non-steroidal Secondary Alcohols. Chembiochem 2022; 23:e202200075. [PMID: 35143703 PMCID: PMC9303356 DOI: 10.1002/cbic.202200075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/09/2022] [Indexed: 11/23/2022]
Abstract
The enantioselective oxidation of 2° alcohols to ketones is an important reaction in synthetic chemistry, especially if it can be achieved using O2 -driven alcohol oxidases under mild reaction conditions. However to date, oxidation of secondary alcohols using alcohol oxidases has focused on activated benzylic or allylic substrates, with unactivated secondary alcohols showing poor activity. Here we show that cholesterol oxidase (EC 1.1.3.6) could be engineered for activity towards a range of aliphatic, cyclic, acyclic, allylic and benzylic secondary alcohols. Additionally, since the variants demonstrated high (S)-selectivity, deracemisation reactions were performed in the presence of ammonia borane to obtain enantiopure (R)-alcohols.
Collapse
Affiliation(s)
- Rachel S. Heath
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - Jack J. Sangster
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| |
Collapse
|
5
|
Lappe A, Jankowski N, Albrecht A, Koschorreck K. Characterization of a thermotolerant aryl-alcohol oxidase from Moesziomyces antarcticus oxidizing 5-hydroxymethyl-2-furancarboxylic acid. Appl Microbiol Biotechnol 2021; 105:8313-8327. [PMID: 34643786 PMCID: PMC8557139 DOI: 10.1007/s00253-021-11557-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2-9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. KEY POINTS: • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Annemie Albrecht
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Jankowski N, Urlacher VB, Koschorreck K. Two adjacent C-terminal mutations enable expression of aryl-alcohol oxidase from Pleurotus eryngii in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:7743-7755. [PMID: 34545417 PMCID: PMC8502153 DOI: 10.1007/s00253-021-11585-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/30/2022]
Abstract
Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.
Collapse
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Roda S, Robles-Martín A, Xiang R, Kazemi M, Guallar V. Structural-Based Modeling in Protein Engineering. A Must Do. J Phys Chem B 2021; 125:6491-6500. [PMID: 34106727 DOI: 10.1021/acs.jpcb.1c02545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biotechnological solutions will be a key aspect in our immediate future society, where optimized enzymatic processes through enzyme engineering might be an important solution for waste transformation, clean energy production, biodegradable materials, and green chemistry, for example. Here we advocate the importance of structural-based bioinformatics and molecular modeling tools in such developments. We summarize our recent experiences indicating a great prediction/success ratio, and we suggest that an early in silico phase should be performed in enzyme engineering studies. Moreover, we demonstrate the potential of a new technique combining Rosetta and PELE, which could provide a faster and more automated procedure, an essential aspect for a broader use.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | | | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Masoud Kazemi
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
8
|
Pecularities and applications of aryl-alcohol oxidases from fungi. Appl Microbiol Biotechnol 2021; 105:4111-4126. [PMID: 33997930 PMCID: PMC8140971 DOI: 10.1007/s00253-021-11337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Abstract Aryl-alcohol oxidases (AAOs) are FAD-containing enzymes that oxidize a broad range of aromatic as well as aliphatic allylic alcohols to aldehydes. Their broad substrate spectrum accompanied by the only need for molecular oxygen as cosubstrate and production of hydrogen peroxide as sole by-product makes these enzymes very promising biocatalysts. AAOs were used in the synthesis of flavors, fragrances, and other high-value-added compounds and building blocks as well as in dye decolorization and pulp biobleaching. Furthermore, AAOs offer a huge potential as efficient suppliers of hydrogen peroxide for peroxidase- and peroxygenase-catalyzed reactions. A prerequisite for application as biocatalysts at larger scale is the production of AAOs in sufficient amounts. Heterologous expression of these predominantly fungal enzymes is, however, quite challenging. This review summarizes different approaches aiming at enhancing heterologous expression of AAOs and gives an update on substrates accepted by these promising enzymes as well as potential fields of their application. Key points • Aryl-alcohol oxidases (AAOs) supply ligninolytic peroxidases with H2O2. • AAOs accept a broad spectrum of aromatic and aliphatic allylic alcohols. • AAOs are potential biocatalysts for the production of high-value-added bio-based chemicals.
Collapse
|
9
|
Gomez de Santos P, Lazaro S, Viña-Gonzalez J, Hoang MD, Sánchez-Moreno I, Glieder A, Hollmann F, Alcalde M. Evolved Peroxygenase–Aryl Alcohol Oxidase Fusions for Self-Sufficient Oxyfunctionalization Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Sofia Lazaro
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| | - Manh Dat Hoang
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Bisy e.U., Wuenschendorf 292, 8200 Hofstaetten a. d. Raab, Austria
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
10
|
High-level expression of aryl-alcohol oxidase 2 from Pleurotus eryngii in Pichia pastoris for production of fragrances and bioactive precursors. Appl Microbiol Biotechnol 2020; 104:9205-9218. [PMID: 32949280 PMCID: PMC7567689 DOI: 10.1007/s00253-020-10878-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Abstract The fungal secretome comprises various oxidative enzymes participating in the degradation of lignocellulosic biomass as a central step in carbon recycling. Among the secreted enzymes, aryl-alcohol oxidases (AAOs) are of interest for biotechnological applications including production of bio-based precursors for plastics, bioactive compounds, and flavors and fragrances. Aryl-alcohol oxidase 2 (PeAAO2) from the fungus Pleurotus eryngii was heterologously expressed and secreted at one of the highest yields reported so far of 315 mg/l using the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). The glycosylated PeAAO2 exhibited a high stability in a broad pH range between pH 3.0 and 9.0 and high thermal stability up to 55 °C. Substrate screening with 41 compounds revealed that PeAAO2 oxidized typical AAO substrates like p-anisyl alcohol, veratryl alcohol, and trans,trans-2,4-hexadienol with up to 8-fold higher activity than benzyl alcohol. Several compounds not yet reported as substrates for AAOs were oxidized by PeAAO2 as well. Among them, cumic alcohol and piperonyl alcohol were oxidized to cuminaldehyde and piperonal with high catalytic efficiencies of 84.1 and 600.2 mM−1 s−1, respectively. While the fragrance and flavor compound piperonal also serves as starting material for agrochemical and pharmaceutical building blocks, various positive health effects have been attributed to cuminaldehyde including anticancer, antidiabetic, and neuroprotective effects. PeAAO2 is thus a promising biocatalyst for biotechnological applications. Key points • Aryl-alcohol oxidase PeAAO2 from P. eryngii was produced in P. pastoris at 315 mg/l. • Purified enzyme exhibited stability over a broad pH and temperature range. • Oxidation products cuminaldehyde and piperonal are of biotechnological interest. Graphical abstract![]() Electronic supplementary material The online version of this article (10.1007/s00253-020-10878-4) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
12
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
13
|
Cui H, Cao H, Cai H, Jaeger K, Davari MD, Schwaneberg U. Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry 2020; 26:643-649. [PMID: 31553080 PMCID: PMC7003928 DOI: 10.1002/chem.201903994] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/09/2023]
Abstract
A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold ). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Hao Cao
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Beijing Bioprocess Key Laboratory and College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Haiying Cai
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf and Research Center Jülich, Wilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|