1
|
Jin X, Nguyen BNT, Davies RP. Synthesis and characterisation of copper(I) complexes with relevance to intramolecular Ullmann O, S-arylation. Dalton Trans 2024; 53:12554-12559. [PMID: 38995223 DOI: 10.1039/d4dt01418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Copper-catalysed intramolecular Ullman arylation has been frequently used to synthesise benzoxazoles and benzothiazoles. Despite widespread use, investigations into the mechanism and speciation of copper-containing complexes relevant to the catalytic pathway have remained relatively limited. Accordingly, this study aims to elucidate the structural details of potential copper(I) intermediates through the analysis of their solid-state structures using X-ray crystallography, while also investigating the reactivities of these complexes. Five novel copper complexes are reported which are formed prior to the aryl halide activation step and feature distinct aggregation modes based on either Cu4N4O4C4 or Cu4N4S4C4 clusters.
Collapse
Affiliation(s)
- Xiaodong Jin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Bao-Nguyen T Nguyen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
| | - Robert P Davies
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
2
|
Cen M, Yang X, Zhang S, Gan L, Liu L, Chen T. Synthesis of acyl fluorides through deoxyfluorination of carboxylic acids. Org Biomol Chem 2023; 21:9372-9378. [PMID: 37975303 DOI: 10.1039/d3ob01557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A direct deoxyfluorination of carboxylic acids by utilizing inorganic potassium fluoride (KF) as a safe and inexpensive fluoride source has been developed. Both aryl carboxylic acids and cinnamyl carboxylic acids could be efficiently transformed into valuable acyl fluorides in moderate to high yields with good functional group tolerance. A scale-up reaction could be carried out smoothly under solvent-free conditions, which further demonstrated the practicality of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xi Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shanshan Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Huang B, Zhang X, Guo Y, Tie S, Yang D, Li Y. A One‐Pot Three‐Step Strategy Enables Robust and Efficient Synthesis of 2‐Aryl Benzoxazoles from Amides. ChemistrySelect 2022. [DOI: 10.1002/slct.202203149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bomao Huang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Xinlan Zhang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yue Guo
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Shaolong Tie
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Dingqiao Yang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yue Li
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| |
Collapse
|
5
|
Joseph D, Lee S. Reaction of Amide and Sodium Azide for the Synthesis of Acyl Azide, Urea, and Iminophosphorane. Org Lett 2022; 24:6186-6191. [PMID: 35959978 DOI: 10.1021/acs.orglett.2c02429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amides reacted with NaN3 to give the acyl azides in DMF at 25 °C and produce the symmetrical ureas in THF/H2O at 80 °C via the sequential reaction of acyl substitution and Curtius rearrangement. All acyl azides were also obtained from the secondary amides via sequential reaction of p-toluenesulfonyl chloride and NaN3. In addition, keto-stabilized iminophosphoranes were prepared from a one-pot reaction of amides, NaN3, and phosphines.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
6
|
Aliyu Idris M, Song KH, Lee S. Synthesis of (Hetero)Aroyl Fluorides via a Mild Amides C−N Bond Cleavage. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Kwang Ho Song
- Department of Chemical & Biological Engineering Korea University Seoul 02841 Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
7
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Shinde SR, Girase P, Dhawan S, Inamdar SN, Kumar V, Pawar C, Palkar MB, Shinde M, Karpoormath R. A systematic appraisal on catalytic synthesis of 1,3-oxazole derivatives: A mechanistic review on metal dependent synthesis. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2021.1989596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suraj R. Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Pankaj Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Shaukatali N. Inamdar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Mahesh B. Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
- K. L. E. Society’s College of Pharmacy, J. T. College Campus, Gadag, India
| | - Mahadev Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| |
Collapse
|
9
|
Liu Y, Mo X, Majeed I, Zhang M, Wang H, Zeng Z. An Efficient and Straightforward Approach for Accessing Thioesters via Palladium-Catalyzed C-N Cleavage of Thioamides. Org Biomol Chem 2022; 20:1532-1537. [DOI: 10.1039/d1ob02349g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first report the coupling of activated thioamides with alcohols to efficiently form thioesters via palladium-catalyzed C-N cleavage strategy. The new approach employs the thioamides as thioacylating reagent to give...
Collapse
|
10
|
Zhang Y, Ye X, Liu S, Chen W, Majeed I, Liu T, Zhu Y, Zeng Z. NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds. Org Biomol Chem 2021; 19:8566-8571. [PMID: 34550144 DOI: 10.1039/d1ob01409a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Xiaojing Ye
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Sicheng Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Irfan Majeed
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Tingting Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Yulin Zhu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Zhuo Zeng
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China. .,Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Chen F, Zhu C, Jiang H. [3+1+1] Annulation Reaction of Benzo‐1,2‐Quinones, Aldehydes and Hydroxylamine Hydrochloride: Access to Benzoxazoles with Inorganic Nitrogen Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University) Lanzhou 730000 People's Republic of China
| |
Collapse
|
12
|
Li G, Szostak M. Synthesis of biaryl ketones by arylation of Weinreb amides with functionalized Grignard reagents under thermodynamic control vs. kinetic control of N,N-Boc 2-amides. Org Biomol Chem 2021; 18:3827-3831. [PMID: 32396595 DOI: 10.1039/d0ob00813c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly efficient method for chemoselective synthesis of biaryl ketones by arylation of Weinreb amides (N-methoxy-N-methylamides) with functionalized Grignard reagents is reported. This protocol offers rapid entry to functionalized biaryl ketones after Mg/halide exchange with i-PrMgCl·LiCl under operationally-simple and practical reaction conditions. The scope of the method is highlighted in >40 examples, including bioactive compounds and pharmaceutical derivatives. Collectively, this transition-metal-free approach offers a major advantage over the recently established cross-coupling of amides by oxidative addition of N-C(O) bonds. Considering the utility of amide acylation reactions in modern synthesis, we expect that this method will be of broad interest.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
13
|
Chen J, Joseph D, Xia Y, Lee S. Amide/Ester Cross-Coupling via C–N/C–H Bond Cleavage: Synthesis of β-Ketoesters. J Org Chem 2021; 86:5943-5953. [DOI: 10.1021/acs.joc.0c02868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiajia Chen
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Devaneyan Joseph
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. A Strategy for Accessing Aldehydes
via
Palladium‐Catalyzed C−O/C−N Bond Cleavage in the Presence of Hydrosilanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhanyu He
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zijia Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Junxiang Ru
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yulin Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Tingting Liu
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
15
|
Wang Z, Matsumoto A, Maruoka K. Efficient cleavage of tertiary amide bonds via radical-polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chem Sci 2020; 11:12323-12328. [PMID: 34094440 PMCID: PMC8163011 DOI: 10.1039/d0sc05137c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported. Based on the selective radical abstraction of a benzylic hydrogen atom by a CuBr2/Selectfluor hybrid system followed by a selective cleavage of an N-C bond, an acyl fluoride intermediate is formed. This intermediate may then be derivatized in a one-pot fashion. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to the tertiary amide moiety as well as to nitrogen, oxygen, and carbon nucleophiles for the subsequent derivatization. Mechanistic studies suggest that the present reaction proceeds via a radical-polar crossover process that involves benzylic carbon radicals generated by the selective radical abstraction of a benzylic hydrogen atom by the CuBr2/Selectfluor hybrid system. Furthermore, a synthetic application of this method for the selective cleavage of peptides is described.
Collapse
Affiliation(s)
- Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
16
|
Jian J, He Z, Zhang Y, Liu T, Liu L, Wang Z, Wang H, Wang S, Zeng Z. Palladium‐Catalyzed Suzuki Coupling of
N
‐Acyloxazolidinones via Selective Cleavage of C–N Bonds. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Junsheng Jian
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Zhanyu He
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Yuqi Zhang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Tingting Liu
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Lizhen Liu
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Zijia Wang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Hui Wang
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| | - Sanyong Wang
- Guangye L&P Food Ingredient Co., Ltd. 510308 Guangzhou Guangdong P. R. China
| | - Zhuo Zeng
- College of Chemistry South China Normal University 510006 Guangzhou Guangdong P. R. China
| |
Collapse
|
17
|
Szostak M, Li G. Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
Collapse
|
18
|
Chen J, Xia Y, Lee S. Transamidation for the Synthesis of Primary Amides at Room Temperature. Org Lett 2020; 22:3504-3508. [DOI: 10.1021/acs.orglett.0c00958] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
19
|
Wang CA, Liu C, Szostak M. N-Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd–PEPPSI or Pd/Phosphine Catalysts. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chang-An Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an, Shandong 271000, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Ma S, Zhou T, Li G, Szostak M. Suzuki‐Miyaura Cross‐Coupling of Amides using Well‐Defined, Air‐Stable [(PR
3
)
2
Pd(II)X
2
] Precatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siyue Ma
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Guangchen Li
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| |
Collapse
|
21
|
Zhang Y, Wang Z, Tang Z, Luo Z, Wu H, Liu T, Zhu Y, Zeng Z. Water Phase, Room Temperature, Ligand-Free Suzuki-Miyaura Cross-Coupling: A Green Gateway to Aryl Ketones by C-N Bond Cleavage. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuqi Zhang
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Zijia Wang
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Zhao Tang
- Class Zheng, International Department; The Affiliated High School of SCNU; 516006 Guangzhou China
| | - Zhongfeng Luo
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Hongxiang Wu
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Tingting Liu
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Yulin Zhu
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
| | - Zhuo Zeng
- College of Chemistry; South China Normal University; 510006 Guangzhou Guangdong P. R. China
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 LingLing Road 200032 Shanghai China
| |
Collapse
|
22
|
Mai WP, Liu Y, Sui HD, Xiao YM, Mao P, Lu K. A Novel Ketonitrile Synthesis by Palladium-Catalyzed Carbonylative Coupling Reactions of Amides with Arylboronic Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wen-Peng Mai
- School of Materials and Chemical Engineering; Henan University of Engineering; 450006 Zhengzhou China
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Yang Liu
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Hong-Dai Sui
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Pu Mao
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Kui Lu
- School of Materials and Chemical Engineering; Henan University of Engineering; 450006 Zhengzhou China
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
- School of Chemical Engineering and Food Science; Zhengzhou Institute of Technology; 450044 Zhengzhou China
| |
Collapse
|