1
|
Wei T, Xie MS, Guo HM. Construction of thioglycoside bonds via an asymmetric organocatalyzed sulfa-Michael/aldol reaction: access to 4'-thionucleosides. Chem Commun (Camb) 2024; 60:5018-5021. [PMID: 38639063 DOI: 10.1039/d4cc00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Thioglycoside bond formation via an asymmetric sulfa-Michael/aldol reaction of (E)-β-nucleobase acrylketones and 1,4-dithiane-2,5-diol has been achieved with a cinchona alkaloid-derived bifunctional squaramide chiral catalyst. Diverse purine, benzimidazole, and imidazole substrates are well tolerated and generate 4'-thionucleoside derivatives containing three contiguous stereogenic centers with excellent results (30 examples, up to 97% yield, >20 : 1 dr and up to 99% ee). Moreover, the novel strategy provides an efficient and convenient synthetic route to construct chiral 4'-thionucleosides.
Collapse
Affiliation(s)
- Tao Wei
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate. MOLBANK 2023. [DOI: 10.3390/m1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Organocatalyzed synthesis of tert-butyl 2-amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate, prepared from Boc-tetramic acid and benzylidenemalononitrile, is disclosed. Two bifunctional noncovalent organocatalysts were employed, yielding the product as a racemic mixture in both cases. The structure of the new synthesized compound was confirmed by high resolution mass-spectrometry, 1H- and 13C-NMR, HSQC, and IR spectroscopy.
Collapse
|
3
|
Niu C, Du DM. Recent Advances in Organocatalyzed Asymmetric sulfa-Michael Addition Triggered Cascade Reactions. CHEM REC 2023:e202200258. [PMID: 36594608 DOI: 10.1002/tcr.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The sulfa-Michael addition reaction is a crucial subset of the Michael addition reaction, and aroused the interest of numerous synthetic biologists and chemists. In particular, sulfa-Michael addition triggered cascade reaction has developed quickly in recent years because it offers an efficient method to construct C-S bonds and other bonds in one approach, which is widely applicable for building chiral pharmaceuticals, their intermediates, and natural compounds. This review emphasizes the recent advancements in sulfa-Michael addition-triggered cascade reactions for the stereoselective synthesis of sulfur-containing compounds, including sulfa-Michael/aldol, sulfa-Michael/Henry, sulfa-Michael/Michael, sulfa-Michael/Mannich and some sulfa-Michael triggered multi-step processes. Moreover, some reaction mechanisms and derivatization experiments are introduced appropriately.
Collapse
Affiliation(s)
- Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|
4
|
1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one. MOLBANK 2022. [DOI: 10.3390/m1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one, was synthesized for the first time in 75% yield by the base-catalyzed intramolecular cyclization of 4-((4-chlorophenyl)amino)-4-phenyl-1-(thiophen-2-yl)pent-2-yn-1-one. The starting aminoacetylenic ketone was prepared by cross-coupling of available propargylamines with acyl chlorides in the presence of the PdCl2/CuI/Ph3P catalytic system.
Collapse
|
5
|
Benaglia M, Greco SJ, Westphal R, Venturini Filho E, Medici F. Stereoselective Domino Reactions in the Synthesis of Spiro Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1771-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.1 Introduction2 Asymmetric Domino Reactions2.1 Domino Reactions Initiated by Michael Reactions2.2 Domino Reactions Initiated by Mannich Reactions2.3 Domino Reactions Initiated by Knoevenagel Reactions2.4 Domino Reactions Initiated by Cycloaddition Reactions2.5 Domino Reactions Initiated by Metal Insertion2.6 Other Mechanisms3 Conclusion
Collapse
|
6
|
Ciber L, Ričko S, Gregorc J, Pozgan F, Svete J, Brodnik H, Štefane B, Grošelj U. Mechanistic Insights into Annulation of Arylidene‐Δ2‐pyrrolin‐4‐ones by Cinchona Squaramide‐Based Organocatalysts. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luka Ciber
- University of Ljubljana, Faculty of Chemistry and Chemical Technology SLOVENIA
| | - Sebastijan Ričko
- Univerza v Ljubljani Fakulteta za Kemijo in Kemijsko tehnologijo SLOVENIA
| | - Jure Gregorc
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| | | | | | | | | | - Uroš Grošelj
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| |
Collapse
|
7
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
8
|
Mała ŻA, Janicki MJ, Niedźwiecka NH, Góra RW, Konieczny KA, Kowalczyk R. Stereoselectivity Enhancement During the Generation of Three Contiguous Stereocenters in Tetrahydrothiophenes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Żaneta A. Mała
- Bioorganic Chemistry Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Mikołaj J. Janicki
- Physical and Quantum Chemistry Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Natalia H. Niedźwiecka
- Bioorganic Chemistry Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Robert W. Góra
- Physical and Quantum Chemistry Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Krzysztof A. Konieczny
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał Kowalczyk
- Bioorganic Chemistry Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
9
|
Huang KX, Xie MS, Sang JW, Qu GR, Guo HM. Asymmetric Synthesis of 3-Amine-tetrahydrothiophenes with a Quaternary Stereocenter via Nickel(II)/Trisoxazoline-Catalyzed Sulfa-Michael/Aldol Cascade Reaction: Divergent Access to Chiral Thionucleosides. Org Lett 2021; 23:81-86. [PMID: 33332122 DOI: 10.1021/acs.orglett.0c03747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A generally useful Ni(II)/trisoxazoline-catalyzed asymmetric sulfa-Michael/Aldol cascade reaction is introduced to access chiral 3-amine-tetrahydrothiophene derivatives containing a quaternary stereocenter (32 examples, up to 93% yield, > 20:1 dr and 92% ee). Moreover, the novel strategy offers an efficient and convenient approach to construct chiral thionucleoside analogues.
Collapse
Affiliation(s)
- Ke-Xin Huang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ji-Wei Sang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Ričko S, Izzo JA, Jørgensen KA. Insights on the Pseudo‐Enantiomeric Properties of Bifunctional Cinchona Alkaloid Squaramide‐Derived Organocatalyst. Chemistry 2020; 26:15727-15732. [DOI: 10.1002/chem.202004117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastijan Ričko
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Aarhus Institute of Advanced Studies (AIAS) Aarhus University Høegh-Guldbergs Gade 6B 8000 Aarhus C Denmark
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Joseph A. Izzo
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
11
|
Abstract
Arylidene-Δ2-pyrrolin-4-ones undergo organocatalyzed double spirocyclization with 3-isothiocianato oxindoles in a domino 1,4/1,2-addition sequence. The products contain three contiguous stereocenters (ee up to 98%, dr up to 99:1, 12 examples). The absolute configuration of the major diastereomer was determined by single crystal X-ray analysis. Along with heterocyclic Michael acceptors based on oxazolone, isoxazolone, thiazolidinone, pyrazolone, and pyrimidinedione, the reported results display the applicability of unsaturated Δ2-pyrrolin-4-ones (pyrrolones) for the organocatalyzed construction of 3D-rich pyrrolone-containing heterocycles.
Collapse
|
12
|
Sharma P, Kumar R, Bhargava G. Recent development in the synthesis of pyrrolin‐4‐ones/pyrrolin‐3‐ones. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Priyanka Sharma
- Department of Chemical Sciences I.K. Gujral Punjab Technical University Kapurthala India
| | - Rupesh Kumar
- Department of Chemical Sciences I.K. Gujral Punjab Technical University Kapurthala India
| | - Gaurav Bhargava
- Department of Chemical Sciences I.K. Gujral Punjab Technical University Kapurthala India
| |
Collapse
|