1
|
Lin F, Tang R, Liu S, Tan Y. Recent advances in the synthetic applications of nitrosoarene chemistry. Org Biomol Chem 2024. [PMID: 39692149 DOI: 10.1039/d4ob01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.
Collapse
Affiliation(s)
- Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Sheng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
2
|
Hu J, Pradhan S, Waiba S, Das S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem Sci 2024:d4sc07491b. [PMID: 39691465 PMCID: PMC11647916 DOI: 10.1039/d4sc07491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
The direct functionalization of C-H bonds has revolutionized the field of synthetic organic chemistry by enabling efficient and atom-economical modification of arenes by avoiding prefunctionalization. However, the inherent challenges of inertness and regioselectivity in different C-H bonds, particularly for distal positions, necessitate innovative approaches. In this aspect, photoredox catalysis by utilizing both transition metal and organic photocatalysts has emerged as a powerful tool for addressing these challenges under mild reaction conditions. This review provides a comprehensive overview of recent progress in regioselective C-H functionalization in arenes via photocatalysis. Emphasizing the strategies for achieving ortho-, meta-, and para-selectivity, we explore the mechanistic insights, catalyst designs, and the novel methodologies that have expanded the scope of C-H bond functionalization. This discussion aims to offer valuable perspectives for advancing the field and developing more efficient and sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Jun Hu
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Suman Pradhan
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Satyadeep Waiba
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
3
|
Chen PH, Hsu SJ, Chen CC, Fu JC, Hou DR. Synthesis of Diarylamines via Nitrosonium-Initiated C-N Bond Formation. J Org Chem 2024; 89:10316-10326. [PMID: 38950197 PMCID: PMC11267615 DOI: 10.1021/acs.joc.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.
Collapse
Affiliation(s)
| | | | - Cheng-Chun Chen
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Jui-Chen Fu
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| |
Collapse
|
4
|
Zhu L, Ren Y, Liu X, Xu S, Li T, Xu W, Li Z, Liu Y, Xiong B. Catalyst- and Additive-free, Regioselective 1,6-Hydroarylation of para-Quinone Methides with Anilines in HFIP. Chem Asian J 2023; 18:e202300792. [PMID: 37845179 DOI: 10.1002/asia.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A simple and efficient method for the synthesis of diarylmethyl-functionalized anilines through the hexafluoroisopropanol (HFIP)-mediated regioselective 1,6-hydroarylation reaction of para-quinone methides (p-QMs) with anilines under catalyst- and additive-free conditions is reported. Various kinds of p-QMs and amines (e. g. primary, secondary and tertiary amines) are well tolerated in this transformation without the pre-protection of amino group, and the corresponding products could be generated with good to excellent yields and satisfactory regioselectivity under the optimized reaction conditions. In addition to adaptable amine compounds, indoles and their derivatives are also compatible with this reaction system. This transformation can be easily extended to a gram scale-synthesis level to synthesize the target product. Furthermore, it is worth noting that some complex small aniline molecules with biological activity can be selectively modified using this method. The possible reaction mechanism is proposed through the step-by-step control experiments and DFT calculations, showing that the key process for achieving the regioselective 1,6-hydroarylation of p-QMs is the hydrogen bonding effect of HFIP to substrates.
Collapse
Affiliation(s)
- Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Xianping Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Tao Li
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha, 410007 (P. R., China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| |
Collapse
|
5
|
Lee S, Chao MW, Wu YW, Hsu CM, Lin TE, Hsu KC, Pan SL, Lee HY. Synthesis and evaluation of potent (iso)ellipticine-based inhibitors of MYLK4 accessed via expeditious synthesis from isoquinolin-5-ol. RSC Adv 2023; 13:31595-31601. [PMID: 37908644 PMCID: PMC10613853 DOI: 10.1039/d3ra06600b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
The K2S2O8-mediated generation of p-iminoquinone contributed to the regioselective substitution of isoquinolin-5,8-dione. This hydroxyl group-guided substitution was also applied to selected heterocycles and addressed the regioselectivity issue of quinones. This study has provided an expeditious pathway from isoquinolin-5-ol (5) to ellipticine (1) and isoellipticine (2), which benefits the comprehensive comparison of their activity. Compounds 1 and 2 displayed marked MYLK4 inhibitory activity with IC50 values of 7.1 and 6.1 nM, respectively. In the cellular activity of AML cells (MV-4-11 and MOLM-13), compound 1 showed better AML activity than compound 2.
Collapse
Affiliation(s)
- Szu Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taiwan +886-2-7361661
| | - Min-Wu Chao
- School of Medicine, College of Medicine, National Sun Yat-sen University Kaohsiung Taiwan
- Institute of Biopharmaceutical Sciences, College of Medicine, National Sun Yat-sen University Kaohsiung Taiwan
- The Doctoral Program of Clinical and Experimental Medicine, College of Medicine, National Sun Yat-sen University Kaohsiung Taiwan
| | - Yi-Wen Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
| | - Chia-Min Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University Taipei Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University Taipei Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University Taipei Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University Taipei Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taiwan +886-2-7361661
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University Taipei Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University Taipei Taiwan
| |
Collapse
|
6
|
Biswas S, Kaur S, Myers CA, Chen AA, Welch JT. Aggregation in Aqueous Solutions of 2-(Tetrafluoro(trifluoromethyl)-λ 6-sulfanyl-ethan-1-ol (CF 3SF 4-ethanol)): A Comparison with Aqueous Trifluoroethanol and Hexafluoroisopropanol Using Molecular Dynamics Simulations and Dynamic Light Scattering Experiments. ACS OMEGA 2023; 8:30037-30047. [PMID: 37636933 PMCID: PMC10448670 DOI: 10.1021/acsomega.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
2-Tetrafluoro(trifluoromethyl)-λ6-sulfanylethan-1-ol (CF3SF4-ethanol) combines the polar hydrophobicity of tetrafluoro(trifluoromethyl)-λ6-sulfanyl (CF3SF4) group with the polarity of simple alcohols. The properties of aqueous solutions of the well-known fluorinated alcohols 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) were compared with those of aqueous solutions of the novel CF3SF4-ethanol. Those properties were computed using all atom molecular dynamics simulations with OPLS-compatible parameters. DFT ab initio calculations were used to accurately describe the nonsymmetrical, hypervalent sulfur in CF3SF4-ethanol. Although the molecular and conformational characteristics of CF3SF4-ethanol are like those of both TFE and HFIP, the greater hydrophobicity and lower polarity of CF3SF4-ethanol resulted in solution phase aggregation at a much lower concentration. The properties computed for TFE and HFIP in this work were consistent with published computational and experimental studies. CF3SF4-ethanol is predicted to be environmentally benign and hence an excellent green solvent candidate while possessing many of the same properties as TFE or HFIP.
Collapse
Affiliation(s)
- Samadrita Biswas
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Simi Kaur
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Christopher A. Myers
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
- Department
of Physics, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Alan A. Chen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - John T. Welch
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| |
Collapse
|
7
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
8
|
Matsuda C, Igarashi R, Katagiri H, Murase T. Skeletal Transformation Triggered by C−F Bond Activation after Photochemical Rearrangement of Fluorinated [7]Helicenes. Chemistry 2022; 28:e202200132. [DOI: 10.1002/chem.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chikako Matsuda
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| | - Ryo Igarashi
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Takashi Murase
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| |
Collapse
|
9
|
An QJ, Xia W, Ding WY, Liu HH, Xiang SH, Wang YB, Zhong G, Tan B. Nitrosobenzene-Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N-Arylbenzimidazoles. Angew Chem Int Ed Engl 2021; 60:24888-24893. [PMID: 34553823 DOI: 10.1002/anie.202111251] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Described herein is an imidazole ring formation strategy for the synthesis of axially chiral N-arylbenzimidazoles by means of chiral phosphoric acid catalysis. Two sets of conditions were developed to transform two classes of 2-naphthylamine derivatives into structurally diverse N-arylbenzimidazole atropisomers with excellent chemo- and regioselectivity as well as high levels of enantiocontrol. It is worth reflecting on the unique roles played by the nitroso group in this domino reaction. It functions as a linchpin by first offering an electrophilic site (N) for the initial C-N bond formation while the resulting amine performs the nucleophilic addition to form the second C-N bond. Additionally, it could facilitate the final oxidative aromatization as an oxidant. The atropisomeric products could be conveniently elaborated to a series of axially chiral derivatives, enabling the exploitation of N-arylbenzimidazoles for their potential utilities in asymmetric catalysis.
Collapse
Affiliation(s)
- Qian-Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
An Q, Xia W, Ding W, Liu H, Xiang S, Wang Y, Zhong G, Tan B. Nitrosobenzene‐Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric
N
‐Arylbenzimidazoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian‐Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wei‐Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Huan‐Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yong‐Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
11
|
Bao M, Xie X, Hu W, Xu X. Gold‐Catalyzed Carbocyclization/C=N Bond Formation Cascade of Alkyne‐Tethered Diazo Compounds with Benzo[
c
]isoxazoles for the Assembly of 4‐Iminonaphthalenones and Indenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| |
Collapse
|
12
|
Gadde K, Maes BUW, Abbaspour Tehrani K. HFIP-mediated 2-aza-Cope rearrangement: metal-free synthesis of α-substituted homoallylamines at ambient temperature. Org Biomol Chem 2021; 19:4067-4075. [PMID: 33978010 DOI: 10.1039/d1ob00404b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient metal-free strategy for the synthesis of α-substituted homoallylamine derivatives has been developed via a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-promoted 2-aza-Cope rearrangement of aldimines, generated in situ by condensation of aldehydes with easily accessible 1,1-diphenylhomoallylamines. This reaction provides rapid access to α-substituted homoallylamines with excellent functional group tolerance and yields. The reaction takes place at room temperature and no chromatographic purification is required for product isolation. The synthetic utility of the current method is further demonstrated by the transformation of the obtained benzophenone ketimines into N-unprotected homoallylamines, an α-amino alcohol and an α-amino amide.
Collapse
Affiliation(s)
- Karthik Gadde
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | |
Collapse
|
13
|
Xie R, Lu GP, Jiang HF, Zhang M. Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. Aerobic Tetrazine‐Catalyzed Oxidative Nitroso‐Diels‐Alder Reaction of N‐Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6‐Dihydro‐1,2‐oxazines. ChemCatChem 2019. [DOI: 10.1002/cctc.201901373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tuan Le
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Jérémy Merad
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Clémence Allain
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Pierre Audebert
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| |
Collapse
|