1
|
Cui CC, Lin F, Wang LY, Liu YP, Tu SJ, Tu MS, Hao WJ, Jiang B. Olefin skeletal rearrangement enabling access to multiarylated N-sulfonyl amidines. Chem Commun (Camb) 2024; 60:1492-1495. [PMID: 38224160 DOI: 10.1039/d3cc05977d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A base-promoted olefin skeletal rearrangement strategy from para-quinone methides (p-QMs) and N-fluoroarenesulfonamides is reported, enabling direct nitrogen insertion of olefins to produce a series of multiarylated (Z)-N-sulfonyl amidines with complete stereoselectivity and generally good yields. Using p-QMs without o-hydroxy substituents gave triarylated N-sulfonyl amidines, whereas tetraarylated N,N'-disulfonyl amidines were synthesized with the existence of o-hydroxy groups.
Collapse
Affiliation(s)
- Chen-Chang Cui
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Feng Lin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Lu-Yao Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yin-Ping Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Man-Su Tu
- Analyzing and Test Center, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
2
|
Chou YC, Lin WH, Lin XY, Kuo CL, Zeng WQ, Lu IC, Liang CF. Hexamethyldisilazane-Mediated Amidination of Sulfonamides and Amines with Formamides. J Org Chem 2022; 87:15327-15332. [PMID: 36302512 DOI: 10.1021/acs.joc.2c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hexamethyldisilazane was reacted with formamides to generate N,N-disubstituent formimidamide, after which a reaction with sulfonamides was induced to form sulfonylformamidines. This protocol can be applied for arylformamidine formation in which anilines are used as substrates under optimized conditions. The advantages of this method are high efficiency, structural diversity in products with good yields, and applicability in large-scale operations.
Collapse
Affiliation(s)
- Yu-Chen Chou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Han Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiu-Yi Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chin-Ling Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Qin Zeng
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Nishad CS, Haldar KK, Banerjee B. Metal-Free Direct Access to N-Sulfonyl Amidines from Sulfonamides and Secondary Amines Involving Tandem C-N Bond Formations. J Org Chem 2022; 87:11644-11655. [PMID: 35977049 DOI: 10.1021/acs.joc.2c01292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a mild and efficient metal-free one-pot procedure for the synthesis of N-sulfonyl amidines via the direct reaction of sulfonamides with secondary amines without using any additives. A wide range of substrates with variety of functional groups is well tolerated under the reaction conditions. Preliminary mechanistic studies indicate that the secondary amine plays a dual role as a C1 source of the amidine group and an aminating agent. Synthetic utility of this method is shown in the late-stage functionalization of drug molecules on the gram scale.
Collapse
Affiliation(s)
| | | | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
4
|
Mohammadpour F, Ghaderi A. Synthesis of N-sulfonylamidines via three-component reaction of proline, aldehydes, and sulfonyl azides under metal-free conditions. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
6
|
Ying J, Liu T, Liu Y, Wan JP. Base-Promoted Annulative Difluoromethylenation of Enaminones with BrCF 2CO 2Et toward 2,2-Difluorinated 2,3-Dihydrofurans. Org Lett 2022; 24:2404-2408. [PMID: 35302379 DOI: 10.1021/acs.orglett.2c00671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical method for the synthesis of 2,2-difluorinated 2,3-dihydrofurans has been established via the [4 + 1] annulation of enaminones and BrCF2CO2Et with Na2CO3 promotion. This new protocol does not employ any transition metal reagent and enables the annulative difluoromethylation by the partial cleavage of the C═C double bond. In addition, the further treatment with hydrochloric acid in one pot leads to β-keto enoic acids (4-oxo-2-butenoic acids) via a formal enaminone C-N carboxylation.
Collapse
Affiliation(s)
- Jinbiao Ying
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ting Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
7
|
Amine-catalyzed synthesis of N2-sulfonyl 1,2,3-triazole in water and the tunable N2-H 1,2,3-triazole synthesis in DMSO via metal-free enamine annulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
CuI incorporated magnetic iminochitosan as an efficient catalyst for the synthesis of N-sulfonylamidines possessing 2-formylpyrrole moiety and their subsequent reactions to the synthesis of isoxazole-5-one hybrid derivatives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Li F, Wu Z, Wang J, Zhang S, Yu J, Yuan Z, Liu J, Shen R, Zhou Y, Liu L. Metal-free synthesis of N-sulfonylformamidines via skeletal reconstruction of sulfonyl oximonitriles. Org Chem Front 2022. [DOI: 10.1039/d1qo01665b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We firstly develop an unprecedented domino reaction of sulfonyl oximonitriles with secondary amines to streamline synthesis of N-sulfonylformamidines in decent to high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Siyuan Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jiaxin Yu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Zhen Yuan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingya Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Renzeng Shen
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
10
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
11
|
Zhou Z, Zhao Y, Zhou D, Li L, Luo H, Cui L, Yang W. Rapid and efficient synthesis of formamidines in a catalyst-free and solvent-free system. RSC Adv 2021; 11:33868-33871. [PMID: 35497291 PMCID: PMC9042323 DOI: 10.1039/d1ra06809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
An operationally rapid and efficient synthesis of N-sulfonyl formamidines that proceeds under mild conditions was achieved by reaction of a mixture of an amine, a sulfonyl azide, and a terminal ynone under catalyst-free and solvent-free conditions. Terminal ynones provide the C source to formamidines via complete cleavage of C[triple bond, length as m-dash]C.
Collapse
Affiliation(s)
- Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Donghua Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| |
Collapse
|
12
|
Gao P, Chen H, Bai ZJ, Zhang S, Zhao MN, Yang D, Li Y, Zhang J, Wang X. Iodine-Mediated Cyclization of Enamines to Imidazole-4-Carboxylic Derivatives with Sequential Removal of Nitrogen Atoms from TMSN 3. J Org Chem 2021; 86:10492-10500. [PMID: 34308649 DOI: 10.1021/acs.joc.1c01145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An iodine-mediated oxidative [4+1] cyclization of enamines with TMSN3 for the synthesis of 2,5-disubstituted imidazole-4-carboxylic derivatives has been developed. The mechanistic studies revealed that the reaction proceeds through a sequential removal of two nitrogen atoms from TMSN3. The synthetic utility was further demonstrated with a gram-scale reaction and various derivatization transformations of the products.
Collapse
Affiliation(s)
- Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Huaijuan Chen
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Zi-Jing Bai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Desuo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Yingchun Li
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xiaomei Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| |
Collapse
|
13
|
Yang D, Shi J, Chen J, Jia X, Shi C, Ma L, Li Z. Visible-light enabled room-temperature dealkylative imidation of secondary and tertiary amines promoted by aerobic ruthenium catalysis. RSC Adv 2021; 11:18966-18973. [PMID: 35478631 PMCID: PMC9033495 DOI: 10.1039/d0ra10517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Employing sulfonyl azide as a nitrogen donor, a visible-light-enabled aerobic dealkylative imidation of tertiary and secondary amines involving C(sp3)–C(sp3) bond cleavage with moderate to excellent yields at room temperature is described. It has been demonstrated that this imidation could take place spontaneously upon visible-light irradiation, and could be facilitated considerably by a ruthenium photocatalyst and oxygen. An alternative mechanism to the previous aerobic photoredox pathway has also been proposed. A photoredox dealkylative imidation of tertiary and secondary amines with sulfonyl azide facilitated by aerobic ruthenium-catalysis to afford sulfonyl amidine at room temperature is reported.![]()
Collapse
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
14
|
Bahadorikhalili S, Divar M, Damghani T, Moeini F, Ghassamipour S, Iraji A, Miller MA, Larijani B, Mahdavi M. N-sulfonyl ketenimine as a versatile intermediate for the synthesis of heteroatom containing compounds. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Liu AR, Zhang L, Li J, Wusiman A. Catalyst-free one-pot, four-component approach for the synthesis of di- and tri-substituted N-sulfonyl formamidines. RSC Adv 2021; 11:15161-15166. [PMID: 35424053 PMCID: PMC8698225 DOI: 10.1039/d1ra00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
A straightforward one-pot, multicomponent approach was developed to synthesize di- and tri-substituted N-sulfonyl formamidines from sulfonyl chlorides, NaN3, ethyl propiolate, and primary/secondary amines under mild conditions without catalysts or additives. Structural analysis of the di-substituted sulfonyl formamidines indicated formation of the E-syn/anti isomeric form. Tri-substituted analogues only formed E-isomers.
Collapse
Affiliation(s)
- Ai-Ran Liu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Jiao Li
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Urumqi 830054 China
| |
Collapse
|
16
|
Pawar A, Gajare S, Patil A, Kurane R, Rashinkar G, Patil S. One-pot multicomponent synthesis of N-sulfonyl amidines using magnetic separable nanoparticles-decorated N-heterocyclic carbene complex with copper. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Liu H, Pang Z, Hao L, Sun J, Zhang Z, Wen F, Xia C. Sulfonylimination of Proline with Sulfonylazides Involving Aldehyde-Induced Decarboxylation Coupling. Org Lett 2021; 23:1234-1238. [PMID: 33560135 DOI: 10.1021/acs.orglett.0c04187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the presence of aldehyde, a facile method was developed to obtain N-sulfonyl amidines under metal- and oxidant-free conditions by the decarboxylative of proline. This transformation features a double C-N bond formation and allows for the green synthesis of the N-sulfonyl amidines on the basis of mild conditions.
Collapse
Affiliation(s)
- Hongyan Liu
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zengfen Pang
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Liqiang Hao
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Jian Sun
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zheng Zhang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Fuqiang Wen
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chengcai Xia
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
18
|
Zheng X, Liu Y, Wan JP. Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Peng F, Huang L, Huang J, Feng H. Double aza-Morita-Baylis-Hillman Domino Reaction to Access Amino Derived 1,6-Dienes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Gan L, Yu Q, Liu Y, Wan JP. Scissoring Enaminone C═C Double Bond by Free Radical Process for the Synthesis of α-Trifluoromethyl Ketones with CF 3SO 2Na. J Org Chem 2020; 86:1231-1237. [PMID: 33289380 DOI: 10.1021/acs.joc.0c02431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C═C double bond cleavage on tertiary enaminones, enabling the formation of a new C-CF3 bond, has been realized as a practical method for the synthesis of α-trifluoromethyl ketones with only the promotion of TBHP and ambient heating. Control experiments support that the reactions proceed via a featured free radical process. The deuterium labeling experiment employing D2O indicates that water participated in the product formation by donating the hydrogen atom for the newly generated α-C-H bond in the product.
Collapse
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China.,School of Science, Nanchang Institute of Technology, Nanchang 330029, P.R. China
| | - Qing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
21
|
Fu L, Xu Z, Wan JP, Liu Y. The Domino Chromone Annulation and a Transient Halogenation-Mediated C–H Alkenylation toward 3-Vinyl Chromones. Org Lett 2020; 22:9518-9523. [DOI: 10.1021/acs.orglett.0c03548] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
22
|
Deng L, Liu Y, Zhu Y, Wan J. Transition‐Metal‐Free Annulation of Enamines and Tosyl Azide toward N‐Heterocycle Fused and 5‐Amino‐1,2,3‐Triazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yanping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University 264005 Yantai P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| |
Collapse
|
23
|
Parimi U, Nannapaneni M. ZIF‐8 Catalysed Efficient Synthesis of Dicyano Alkyl Quinoline Derivatives in Aqueous Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.202001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Usharani Parimi
- Department of Chemistry Acharya Nagarjuna University Guntur- 522510 Andhrapradesh India
| | | |
Collapse
|
24
|
Gan L, Wei L, Wan J. Catalyst‐Free Synthesis of α‐Diazoketones in Water by Microwave Promoted Enaminone C=C Double Bond Cleavage. ChemistrySelect 2020. [DOI: 10.1002/slct.202002247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
- School of ScienceNanchang Institute of Technology Nanchang 330029 P. R. China
| | - Li Wei
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
25
|
Tong Z, Tang Z, Au CT, Qiu R. Nickel-Catalyzed Decarbonyloxidation of 3-Aryl Benzofuran-2( 3H)-ones to 2-Hydroxybenzophenones. J Org Chem 2020; 85:8533-8543. [PMID: 32483961 DOI: 10.1021/acs.joc.0c00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a protocol to facilitate the nickel-catalyzed decarbonyloxidation of 3-aryl benzofuran-2(3H)-ones to 2-hydroxybenzophenones under mild conditions, which is an efficient approach for the decarbonyloxidation of lactones in organic synthesis. A diverse range of substrates can undergo C(O)-O/C(O)-C bond cleavage to generate the target products in good yields. These 2-hydroxybenzophenones can be converted into a variety of compounds via reactions such as esterification, cyclization, and reduction.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Institute of Engineering, Xiangtan 411100, P.R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
26
|
Tian L, Wan J, Sheng S. Transition Metal‐free C−H Sulfonylation and Pyrazole Annulation Cascade for the Synthesis of 4‐Sulfonyl Pyrazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lihong Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Shouri Sheng
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
27
|
Yu Q, Liu Y, Wan JP. Transition metal-free synthesis of 3-trifluoromethyl chromones via tandem C–H trifluoromethylation and chromone annulation of enaminones. Org Chem Front 2020. [DOI: 10.1039/d0qo00855a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 3-trifluoromethyl chromones has been realized via transition metal-free reactions of o-hydroxyphenyl enaminones and the Langlois reagent via cascade C–H trifluoromethylation and chromone annulation.
Collapse
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|