1
|
Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. Lanthanide/B(C 6F 5) 3-Promoted Hydroboration Reduction of Indoles and Quinolines with Pinacolborane. J Org Chem 2024. [PMID: 38178689 DOI: 10.1021/acs.joc.3c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We have developed a lanthanide/B(C6F5)3-promoted hydroboration reduction of indoles and quinolines with pinacolborane (HBpin). This reaction provides streamlined access to a range of nitrogen-containing compounds in moderate to excellent yields. Large-scale synthesis and further transformations to bioactive compounds indicate that the method has potential practical applications. Preliminary mechanistic studies suggest that amine additives promote the formation of indole-borane intermediates, and the lanthanide/B(C6F5)3-promoted hydroboration reduction proceeds via hydroboration of indole-borane intermediates with HBpin and in situ-formed BH3 species, followed by the protodeborylation process.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ziyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Mingxin Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rongrong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
2
|
Liu Q, Jiang J, Ye X, Sun J, Wu Y, Shao Y, Deng C, Zhang F. Iodine-Mediated Oxidative Annulation of β,γ-Unsaturated Hydrazones in Dimethyl Sulfoxide: A Strategy to Build 1,6-Dihydropyridazines and Pyrroles. J Org Chem 2023. [PMID: 37449736 DOI: 10.1021/acs.joc.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Simple, commercially available iodine was successfully employed as a highly efficient and chemoselective catalyst for the oxidative annulation of β,γ-unsaturated hydrazones to produce 1,6-dihydropyridazines under mild conditions for the first time. Interestingly, when active β,γ-unsaturated hydrazone compounds containing electron-donating groups, such as furyl, thienyl, and cycloalkyl, were used, pyrroles were obtained. A gram-scale preparation experiment and further derivatization of pyridazines demonstrated the potential applicability of our synthesis method. Experimental studies and density functional theory calculations unveiled the origin of the chemoselectivity determining the formation of different products.
Collapse
Affiliation(s)
- Qianrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiaming Jiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xuanzeng Ye
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiawen Sun
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yao Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
3
|
Sindhe H, Reddy MM, Rajkumar K, Kamble A, Singh A, Kumar A, Sharma S. Pyridine C(sp 2)-H bond functionalization under transition-metal and rare earth metal catalysis. Beilstein J Org Chem 2023; 19:820-863. [PMID: 37346497 PMCID: PMC10280098 DOI: 10.3762/bjoc.19.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Pyridine is a crucial heterocyclic scaffold that is widely found in organic chemistry, medicines, natural products, and functional materials. In spite of the discovery of several methods for the synthesis of functionalized pyridines or their integration into an organic molecule, new methodologies for the direct functionalization of pyridine scaffolds have been developed during the past two decades. In addition, transition-metal-catalyzed C-H functionalization and rare earth metal-catalyzed reactions have flourished over the past two decades in the development of functionalized organic molecules of concern. In this review, we discuss recent achievements in the transition-metal and rare earth metal-catalyzed C-H bond functionalization of pyridine and look into the mechanisms involved.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Karthikeyan Rajkumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anand Kumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
4
|
Li S, Xu X, Sun Q, Xu X. Organocalcium Hydride-Catalyzed Intramolecular C(sp 3)-H Annulation of Functionalized 2,6-Lutidines. J Org Chem 2023; 88:1742-1748. [PMID: 36645347 DOI: 10.1021/acs.joc.2c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work reports an intramolecular C(sp3)-H annulation of functionalized 2,6-lutidines catalyzed by an organocalcium hydride [{(DIPPnacnac)CaH(thf)}2] (DIPPnacnac = CH{(CMe)(2,6-iPr2-C6H3N)}2). This reaction constitutes a streamlined approach for producing a new family of tetrahydro-1,5-naphthyridines and hexahydropyrido[3,2-b]azocines derivatives in good to excellent yields with high atom efficiency and broad substrates scope. A calcium alkyl complex was isolated from the stoichiometric reaction between calcium hydride and the substrate through deprotonation, which was structurally characterized and confirmed as the catalytic intermediate.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Wang S, Wang Y, Hu K, Wang K, Zhou X. Controllable carbonyl-assisted C(sp 3)–C(sp 3) bond reduction and reorganization. Org Chem Front 2023. [DOI: 10.1039/d2qo01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Unprecedentedly preferential reduction of unstrained C(sp3)–C(sp3) bond over ketone, hydrogenative [2+2+2]-cycloreversion of 2,4-diacylcyclohexanols, and cyclizative degradation of poly(vinylketone) have been achieved by organolanthanide catalysis.
Collapse
Affiliation(s)
- Shengke Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
6
|
Li JF, Pan D, Wang HR, Zhang T, Li Y, Huang G, Ye M. Enantioselective C2-H Alkylation of Pyridines with 1,3-Dienes via Ni-Al Bimetallic Catalysis. J Am Chem Soc 2022; 144:18810-18816. [PMID: 36205623 DOI: 10.1021/jacs.2c09306] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral phosphine oxide-ligated Ni-Al bimetallic catalyst was used to realize an enantioselective C2-H alkylation of pyridines without the need of a C2-block. A wide range of pyridines, including unsubstituted pyridine, C3, C4, and C2-substituted pyridines, and even complex pyridine-containing bioactive molecules are well compatible with the reaction, providing up to 81% yield and up to 97% ee.
Collapse
Affiliation(s)
- Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Hao-Rui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Yi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Dicken RD, Motta A, Marks TJ. Homoleptic Lanthanide Amide Catalysts for Organic Synthesis: Experiment and Theory. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rachel D. Dicken
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Alessandro Motta
- Dipartimento di Scienze Chimiche, Università di Roma “La Sapienza” and INSTM, UdR Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
8
|
Liu J, Xie Y, Wu C, Shao Y, Zhang F, Shi Y, Liu Q, Chen J. Samarium( iii) catalyzed synthesis of alkenylboron compounds via hydroboration of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00513h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The homoleptic lanthanide complex Sm[N(TMS)2]3 is an efficient rare-earth catalyst for the hydroboration of alkynes to the corresponding alkenylboron compounds.
Collapse
Affiliation(s)
- Jichao Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
- Institute of New Materials & Industrial Technology
| | - Fangjun Zhang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| |
Collapse
|
9
|
Tamoradi T, Daraie M, Heravi MM, Karmakar B. Erbium anchored iminodiacetic acid (IDA) functionalized CoFe 2O 4 nano particles: an efficient magnetically isolable nanocomposite for the facile synthesis of 1,8-naphthyridines. NEW J CHEM 2020. [DOI: 10.1039/d0nj01676d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a novel magnetic catalyst for the synthesis of biologically important compounds.
Collapse
Affiliation(s)
| | - Mansoureh Daraie
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| | - Majid M. Heravi
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| | | |
Collapse
|
10
|
Neto JSS, Zeni G. Synthesis of indoles from alkynes and a nitrogen source under metal-free conditions. Org Biomol Chem 2020; 18:4906-4915. [DOI: 10.1039/d0ob00670j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review deals with the methodologies published in the last ten years, which used metal-free conditions to prepare indoles starting from alkynes and nitrogen compounds.
Collapse
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Gilson Zeni
- Laboratorio de Sintese
- Reatividade
- Avaliaçao Farmacologica e Toxicologica de Organocalcogenios
- CCNE
- UFSM
| |
Collapse
|