1
|
Li Z, Yuan L, Cao Y, Rong D, Zhao Z, Dai F, Chen L, Xie Y. Visible-Light-Triggered Radical-Addition/Ring-Opening Cascade Reactions of 2 H-Indazoles to Access ortho-Alkoxycarbonylated Azobenzenes. J Org Chem 2024; 89:14802-14810. [PMID: 39377467 DOI: 10.1021/acs.joc.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A series of asymmetric azobenzenes have been synthesized by radical-addition/ring-opening cascade reactions from 2H-indazole in the presence of PIFA and alcohols under blue light irradiation and nitrogen protection. Furthermore, a wide range of functional groups were tolerated and the corresponding products were obtained in 30% to 95% isolated yields. The protocol is characterized by its visible-light initiation, avoidance of metals and photocatalysts, mild reaction conditions, and may find potential use in materials science and medicinal chemistry.
Collapse
Affiliation(s)
- Zhenhua Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou 310014, China
| | - Longfeng Yuan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingyan Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dayou Rong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhihong Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fenghao Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijun Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
2
|
Singha Hazari A, Frisch ML, Wen Y, Stankovic MD, Berlinguette CP. Electrolytic Conversion of Nitro Compounds into Amines in a Membrane Reactor. J Am Chem Soc 2024. [PMID: 39353136 DOI: 10.1021/jacs.4c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Aromatic and aliphatic amines are key intermediates in the synthesis of pharmaceuticals, dyes, and agrochemicals. These amines are often sourced from nitro compounds. The hydrogenation of nitro compounds into amines requires harsh reaction conditions (e.g., high pressures and high temperatures) or additives that are usually toxic. Here we demonstrate the electrochemically-driven hydrogenation of nitro compounds into amines in the hydrogenation compartment of a membrane reactor. The hydrogen is sourced from water in an adjacent electrolysis compartment separated by a hydrogen-permeable palladium membrane. Modifications of the palladium membrane with catalyst coatings enabled a wide range of commercially relevant nitro compounds to be hydrogenated into amines, without any additives, at ambient pressure and room temperature. This membrane reactor also enables nitro hydrogenation at high reagent concentrations with high functional group tolerance.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marvin L Frisch
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yunzhou Wen
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mia D Stankovic
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
3
|
Martina K, Moran MJ, Manzoli M, Trukhan MV, Kuhn S, Van Gerven T, Cravotto G. Copper-Catalyzed Continuous-Flow Transfer Hydrogenation of Nitroarenes to Anilines: A Scalable and Reliable Protocol. Org Process Res Dev 2024; 28:1515-1528. [PMID: 38783856 PMCID: PMC11110069 DOI: 10.1021/acs.oprd.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/25/2024]
Abstract
A robust supported catalyst that is made up of copper nanoparticles on Celite has been successfully prepared for the selective transfer hydrogenation of aromatic nitrobenzenes to anilines under continuous flow. The method is efficient and environmentally benign thanks to the absence of hydrogen gas and precious metals. Long-term stability studies show that the catalytic system is able to achieve very high nitrobenzene conversion (>99%) when working for up to 145 h. The versatility of the transfer hydrogenation system has been tested using representative examples of nitroarenes, with moderate-to-excellent yields being obtained. The packed bed reactor (PBR) permits the use of a setup that can provide products via simple isolation by SPE without the need for further purification. The recovery and reuse of either EG or the ion-exchange resin leads to consistent waste reduction; therefore, E-factor distribution analysis has highlighted the environmental efficiency of this synthetic protocol.
Collapse
Affiliation(s)
- Katia Martina
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maria Jesus Moran
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maela Manzoli
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Mikhail V. Trukhan
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simon Kuhn
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giancarlo Cravotto
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
4
|
Liu J, Yao J, Du J, Yu L, Duan W, Xiao Y, Lei Z. Direct Synthesis of α-Ketoamides via Copper-Catalyzed Reductive Amidation of Nitroarenes with α-Oxocarboxylic Acids. J Org Chem 2024; 89:6575-6583. [PMID: 38656973 DOI: 10.1021/acs.joc.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nitroarenes are known for their stability, low toxicity, easy availability, and cost-effectiveness, making them one of the most fundamental chemical feedstocks. The direct utilization of nitroarenes as nitrogen sources in amidation reactions offers significant advantages over using arylamines. Herein, we disclose a streamlined method for constructing α-ketoamides through the direct coupling of nitroarenes with α-oxocarboxylic acids. This transformation obviates the need for preparing, isolating, and purifying arylamines, leading to improved efficiency, cost-effectiveness, and time savings.
Collapse
Affiliation(s)
- Jialing Liu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhiguo Lei
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
5
|
Zhao MY, Tang YF, Han GZ. Recent Advances in the Synthesis of Aromatic Azo Compounds. Molecules 2023; 28:6741. [PMID: 37764517 PMCID: PMC10538219 DOI: 10.3390/molecules28186741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aromatic azo compounds have -N=N- double bonds as well as a larger π electron conjugation system, which endows aromatic azo compounds with wide applications in the fields of functional materials. The properties of aromatic azo compounds are closely related to the substituents on their aromatic rings. However, traditional synthesis methods, such as the coupling of diazo salts, have a significant limitation with respect to the structural design of aromatic azo compounds. Therefore, many scientists have devoted their efforts to developing new synthetic methods. Moreover, recent advances in the synthesis of aromatic azo compounds have led to improvements in the design and preparation of light-response materials at the molecular level. This review summarizes the important synthetic progress of aromatic azo compounds in recent years, with an emphasis on the pioneering contribution of functional nanomaterials to the field.
Collapse
Affiliation(s)
| | | | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (M.-Y.Z.); (Y.-F.T.)
| |
Collapse
|
6
|
Kumar S, Maurya SK. Heterogeneous V 2O 5/TiO 2-Mediated Photocatalytic Reduction of Nitro Compounds to the Corresponding Amines under Visible Light. J Org Chem 2023. [PMID: 37367717 DOI: 10.1021/acs.joc.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The hydrogenation of nitro compounds to their corresponding amines is developed using a heterogeneous and recyclable catalyst (V2O5/TiO2) under irradiation of blue LED (9 W) at ambient temperature. Hydrazine hydrate is used as a reductant and ethanol is used as a solvent, facilitating green, sustainable, low-cost production. The synthesis of 32 (hetero)arylamines and their pharmaceutically relevant molecules (five) are described. Significant features of the protocol include catalyst recyclability, green solvent, ambient temperature, and gram-scale reactions. Among the other aspects studied are 1H-NMR-assisted reaction progress monitoring, control experiments for mechanistic studies, protocol applications, and recyclability studies. Furthermore, the developed protocol enabled wide functional group tolerance, chemo-selectivity, high yield, and low-cost, sustainable, and environmentally benign synthesis.
Collapse
Affiliation(s)
- Shashi Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
8
|
Wang G, Zhang J, Hu L, Wang J, Zhu C. Polydentate hydrazones as multitasking catalysts in visible-light-induced coupling reactions of amines. Org Biomol Chem 2023; 21:754-760. [PMID: 36598776 DOI: 10.1039/d2ob02092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Cu/hydrazone catalyst has been applied in the coupling reactions of anilines for the synthesis of diarylamines and azobenzenes. The copper complex that is formed in situ plays a double duty by harnessing photon energy as a photocatalyst and then by catalysing organometallic elementary steps as a transition metal catalyst. By the selection of hydrazones and bases, the reaction selectivity of aniline can be tuned between homo-coupling and its cross-coupling with arylboronic acid, exhibiting the great potential of such hydrazones in organic synthesis.
Collapse
Affiliation(s)
- Ganghu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jianhua Zhang
- N.O.D topia (Guangzhou) Biotechnology Co. Ltd., Guangzhou, Guangdong 510599, PR China
| | - Legen Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jiaquan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
9
|
Xu F, Zhan F, Zhang B, Li T, He L, Du L, Luo S, Zheng B, Yun R. A Pod‐like Core‐Shell Catalyst with High Reduction Performance Under Mild Conditions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fagong Xu
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Feiyang Zhan
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Beibei Zhang
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Tuanhui Li
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Lei He
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Liting Du
- Advanced Analysis and Testing Center Nanjing Forestry University Nanjing 210037 P. R. China
| | - Shizhou Luo
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| | - Baishu Zheng
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Ruirui Yun
- The key laboratory of functional molecular solids Ministry of Education College of chemistry and Materials Science Anhui Normal University Wuhu 214001 P. R. China
| |
Collapse
|
10
|
Shi H, Dai X, Liu Q, Zhang T, Zhang Y, Shi Y, Wang T. Magnetic CuNi Alloy Nanoparticles for Catalytic Transfer Hydrogenation of Nitroarene. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongbin Shi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Dai
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Liu
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Teng Zhang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yabing Zhang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuling Shi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Călinescu I, Vinatoru M, Ghimpețeanu D, Lavric V, Mason TJ. A new reactor for process intensification involving the simultaneous application of adjustable ultrasound and microwave radiation. ULTRASONICS SONOCHEMISTRY 2021; 77:105701. [PMID: 34375943 PMCID: PMC8358197 DOI: 10.1016/j.ultsonch.2021.105701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound (US) and Microwaves (MW) are effective methods for processes intensification. Their combined use in the same reactor can lead to remarkable results. Recently there has been a resurgence of interest in this field for new synthetic applications using reactors based upon existing technologies. We describe here a new type of apparatus in which the thermal energy is continuously removed from the system making possible the use of high power and adjustable ultrasonic and microwave densities throughout the process. The installation consists of a glass reactor located in a monomode applicator which is immersed at the same time in an ultrasonic device which can be operated at different frequencies and powers. A liquid, transparent to microwaves, was used to couple ultrasonic energy to the reactor and to remove the heat generated. Comsol software was used to get information about the distribution of ultrasonic and microwave energy between the reactor liquid and the coupling fluid. The performance was assessed using the conversion of p-nitrophenol into 4-nitrocatechol as a chemical dosimeter and a transesterification.
Collapse
Affiliation(s)
- Ioan Călinescu
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7, Gh. Polizu, Bucharest 011061, Romania
| | - Mircea Vinatoru
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7, Gh. Polizu, Bucharest 011061, Romania.
| | - Daniela Ghimpețeanu
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7, Gh. Polizu, Bucharest 011061, Romania
| | - Vasile Lavric
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7, Gh. Polizu, Bucharest 011061, Romania
| | - Timothy J Mason
- Faculty of Health and Life Sciences, Coventry University, United Kingdom
| |
Collapse
|
12
|
Moran MJ, Martina K, Bieliunas V, Baricco F, Tagliapietra S, Berlier G, De Borggraeve WM, Cravotto G. Copper(0) nanoparticle catalyzed
Z
‐Selective Transfer Semihydrogenation of Internal Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Jesus Moran
- Dipartimento di Scienza e Tecnologia del Farmaco University of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco University of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Vidmantas Bieliunas
- KU Leuven Department of Chemistry Celestijnenlaan 200F box 2404 B-3001 Leuven Belgium
| | - Francesca Baricco
- Dipartimento di Scienza e Tecnologia del Farmaco University of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco University of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Gloria Berlier
- Dipartimento di Chimica University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Wim M. De Borggraeve
- KU Leuven Department of Chemistry Celestijnenlaan 200F box 2404 B-3001 Leuven Belgium
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco University of Turin Via Pietro Giuria 9 10125 Turin Italy
| |
Collapse
|
13
|
Hosseini S, Amoozadeh A. An Efficient and Robust Method for Selective Conversion of Aniline to Azobenzene Using nano-TiO 2 -P25-SO 3 H, under Visible Light Irradiation. Photochem Photobiol 2020; 97:278-288. [PMID: 32880982 DOI: 10.1111/php.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022]
Abstract
Nano-TiO2 -P25-SO3 H as our previous report has successfully been utilized to synthesize azobenzene through the selective conversion of aniline under visible light irradiation. According to PL emission spectra, the immobilizing a solid Brønsted acid of -SO3 H groups on the pure-TiO2 -P25 surface with a close interface is an approach to amplify the nano-TiO2 -P25 response to visible light, which can productively hinder the recombination rate of photogenerated electrons and holes as carriers. Therefore, the photocatalytic activity of the semiconductor is highly likely to increase. Photooxidation of aniline to azobenzene was achieved by applying nano-TiO2 -P25-SO3 H (Eg = 2.6 eV) that activated by blue photons (λmax = 460 nm), green photons (λmax = 510 nm) and red photons (λmax = 630 nm) which is introducing as a sustainable procedure. Central composite design (CCD) was employed for evaluating the effects of photocatalyst amount, oxidant concentration and irradiation time on the synthesis of azobenzene by this approach. Easily synthesizing, recyclability of the photocatalyst, mild reaction condition and short reaction time could be considered as plus points of this process.
Collapse
Affiliation(s)
- Saber Hosseini
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|