1
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2025; 64:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
2
|
Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Copper-Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202306511. [PMID: 37332088 PMCID: PMC11365472 DOI: 10.1002/anie.202306511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
Collapse
Affiliation(s)
- Brian S Daniels
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Lindsey M Weissman
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry, GSK, 1250 S. Collegeville Rd, 19426, Collegeville, PA, USA
| |
Collapse
|
3
|
Zhou J, Meng L, Lin S, Cai B, Wang J. Palladium-catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. Angew Chem Int Ed Engl 2023:e202303727. [PMID: 37186017 DOI: 10.1002/anie.202303727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCP) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCP via highly selective C-C bond cleavage. This allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of product enantioselectivity.
Collapse
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Ling Meng
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Shujuan Lin
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Department of Chemistry, CHINA
| | - Baohua Cai
- Southern University of Science and Technology, Department of Chemistry, CHINA
| | - Jun Wang
- Hong Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 000000, Hong Kong, HONG KONG
| |
Collapse
|
4
|
Cai B, Cui Y, Zhou J, Wang YB, Yang L, Tan B, Wang JJ. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styrene-Phosphines. Angew Chem Int Ed Engl 2023; 62:e202215820. [PMID: 36424372 DOI: 10.1002/anie.202215820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
A Cu/CPA co-catalytic system has been developed for achieving the direct hydrophosphinylation of alkynes with phosphine oxides in delivering novel axially chiral phosphorus-containing alkenes in high yields and excellent enantioselectivities (up to 99 % yield and 99 % ee). DFT calculations were performed to elucidate the reaction pathway and the origin of enantiocontrol. This streamlined and modular methodology establishes a new platform for the design and application of new axially chiral styrene-phosphine ligands.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Cui
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
5
|
Yang Q, Zhou J, Wang J(J. Enantioselective copper-catalyzed hydrophosphination of alkenyl isoquinolines. Chem Sci 2023; 14:4413-4417. [PMID: 37123192 PMCID: PMC10132128 DOI: 10.1039/d2sc06950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
An enantioselective Cu-catalyzed hydrophosphination of alkenyl quinolines was developed to access a variety of potential chiral bidentate P,N-ligands.
Collapse
Affiliation(s)
- Qingjing Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun (Joelle) Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Li H, Yin L. Research Progress on Catalytic Asymmetric Synthesis of P-Chiral Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Seah JWK, Teo RHX, Leung PH. Organometallic chemistry and application of palladacycles in asymmetric hydrophosphination reactions. Dalton Trans 2021; 50:16909-16915. [PMID: 34734619 DOI: 10.1039/d1dt03134a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of palladacycles containing chiral chelating auxiliaries have been utilized as efficient catalysts for asymmetric hydrophosphination reactions. In all cases, the chiral auxiliaries remained coordinated to the palladium centres throughout the course of the reactions. Despite the presence of a large quantity of powerful tertiary phosphines, which are known to be strong metal ion sequesters, the expected catalyst poisoning was rarely observed in these palladacycle catalyzed processes. This review highlights the unique stereoelectronic features and the important organometallic chemistry of palladacycle catalysts which are essential to their synthetic operations.
Collapse
Affiliation(s)
- Jeffery Wee Kiong Seah
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Ronald Hong Xiang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Pak-Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
8
|
Teo RHX, Lee JXT, Tan WR, Shum WQ, Li Y, Pullarkat SA, Tan NS, Leung PH. Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ronald Hong Xiang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wen Qian Shum
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Pak-Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
9
|
Zhang S, Xiao JZ, Li YB, Shi CY, Yin L. Copper(I)-Catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines. J Am Chem Soc 2021; 143:9912-9921. [PMID: 34160199 DOI: 10.1021/jacs.1c04112] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper(I)-catalyzed asymmetric alkylation of HPAr1Ar2 with alkyl halides is uncovered, which provides an array of P-stereogenic phosphines in generally high yield and enantioselectivity. The electrophilic alkyl halides enjoy a broad substrate scope, including allyl bromides, propargyl bromide, benzyl bromides, and alkyl iodides. Moreover, 11 unsymmetrical diarylphosphines (HPAr1Ar2) serve as competent pronucleophiles. The present methodology is also successfully applied to catalytic asymmetric double and triple alkylation, and the corresponding products were obtained in moderate diastereo- and excellent enantioselectivities. Some 31P NMR experiments indicate that bulky HPPhMes exhibits weak competitively coordinating ability to the Cu(I)-bisphosphine complex, and thus the presence of stoichiometric HPAr1Ar2 does not affect the enantioselectivity significantly. Therefore, the high enantioselectivity in this reaction is attributed to the high performance of the unique Cu(I)-(R,RP)-TANIAPHOS complex in asymmetric induction. Finally, one monophosphine and two bisphosphines prepared by the present reaction are employed as efficient chiral ligands to afford three structurally diversified Cu(I) complexes, which demonstrates the synthetic utility of the present methodology.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
11
|
Foo CQ, Sadeer A, Li Y, Pullarkat SA, Leung PH. Access to C-Stereogenic PN(sp2)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ce Qing Foo
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Abdul Sadeer
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yongxin Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Sumod A. Pullarkat
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Pak-Hing Leung
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|