1
|
Tu Z, Wan JP, Wei L, Liu Y. Iridium-catalyzed reduction of o-hydroxyl phenyl enaminones for the synthesis of propiophenones and their application in 3-methyl chromone synthesis. Org Biomol Chem 2024; 22:8279-8284. [PMID: 39301715 DOI: 10.1039/d4ob01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A method of reducing o-hydroxyphenyl enaminones with silane as the reductant to provide o-hydroxyl propiophenones has been achieved with iridium catalysis. The reduction reactions were found to proceed via the assistance of the hydroxyl group in the phenyl ring. In addition, the o-hydroxyl propiophenone products were used for the easy synthesis of 3-methyl chromones by directly incorporating N,N-dimethyl formamide dimethyl acetal (DMF-DMA) without using any catalyst.
Collapse
Affiliation(s)
- Zhi Tu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Li Wei
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Lourenço DL, Fernandes AC. Reduction of sulfoxides catalyzed by the commercially available manganese complex MnBr(CO) 5. Org Biomol Chem 2024; 22:3746-3751. [PMID: 38652042 DOI: 10.1039/d4ob00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A new methodology for the reduction of a wide variety of aliphatic and aromatic sulfoxides catalyzed by the air-stable, cheap and commercially available manganese catalyst MnBr(CO)5 with excellent yields is reported in this work. The catalytic system MnBr(CO)5/PhSiH3 is highly chemoselective, allowing the effective reduction of the SO bond in the presence of different functional groups.
Collapse
Affiliation(s)
- Daniel L Lourenço
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Ana C Fernandes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
3
|
Gulyaeva ES, Osipova ES, Kovalenko SA, Filippov OA, Belkova NV, Vendier L, Canac Y, Shubina ES, Valyaev DA. Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes via intermolecular bimetallic cooperation. Chem Sci 2024; 15:1409-1417. [PMID: 38274083 PMCID: PMC10806649 DOI: 10.1039/d3sc05356c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Metal-metal cooperation for inert bond activation is a ubiquitous concept in coordination chemistry and catalysis. While the great majority of such transformations proceed via intramolecular mode in binuclear complexes, to date only a few examples of intermolecular small molecule activation using usually bimetallic frustrated Lewis pairs (Mδ+⋯M'δ-) have been reported. We introduce herein an alternative approach for the intermolecular bimetallic cooperativity observed in the catalytic dehydrogenation of amine-boranes, in which the concomitant activation of N-H and B-H bonds of the substrate via the synergetic action of Lewis acidic (M+) and basic hydride (M-H) metal species derived from the same mononuclear complex (M-Br). It was also demonstrated that this system generated in situ from the air-stable Mn(i) complex fac-[(CO)3(bis(NHC))MnBr] and NaBPh4 shows high activity for H2 production from several substrates (Me2NHBH3, tBuNH2BH3, MeNH2BH3, NH3BH3) at low catalyst loading (0.1% to 50 ppm), providing outstanding efficiency for Me2NHBH3 (TON up to 18 200) that is largely superior to all known 3d-, s-, p-, f-block metal derivatives and frustrated Lewis pairs (FLPs). These results represent a step forward towards more extensive use of intermolecular bimetallic cooperation concepts in modern homogeneous catalysis.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
4
|
Masaro C, Meloni G, Baron M, Graiff C, Tubaro C, Royo B. Bis(N-Heterocyclic Carbene) Manganese(I) Complexes in Catalytic N-Formylation/N-Methylation of Amines Using Carbon Dioxide and Phenylsilane. Chemistry 2023; 29:e202302273. [PMID: 37695746 DOI: 10.1002/chem.202302273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/13/2023]
Abstract
A series of six Mn(I) complexes with general formula [MnBr(bisNHC)(CO)3 ], having a bidentate bis(N-heterocyclic carbene) ligand (bisNHC), has been developed by varying the bridging group between the NHC donors, the nitrogen wingtip substituents and the heterocyclic ring. The synthesis of the complexes has been accomplished by in situ transmetalation of the bisNHC from the corresponding silver(I) complexes. Removal of the bromide anion affords the corresponding solvento complexes [Mn(bisNHC)(CO)3 (CH3 CN)](BF4 ). The influence of the bisNHC structure on its electron donor ability has been evaluated by FTIR and 13 C NMR spectroscopy, both in the neutral and cationic complexes. Finally, the isolated Mn(I)-bisNHC complexes have been employed as homogeneous catalysts in the reductive N-formylation and N-methylation of amines with CO2 as C1 source and phenylsilane as reducing agent, showing a high selectivity for the N-methylated product. Preliminary mechanistic investigations suggest that, in the adopted reaction conditions, the formylated product can be formed via different reaction pathways, either metal-catalyzed or not, while the methylation reaction requires the use of the Mn(I) catalyst.
Collapse
Affiliation(s)
- Chiara Masaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131, Padova, Italy
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131, Padova, Italy
- CIRCC-Consorzio Interuniversitario per le reattività chimiche e la catalisi, Unità di Padova, Università degli Studi di Padova, Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131, Padova, Italy
- CIRCC-Consorzio Interuniversitario per le reattività chimiche e la catalisi, Unità di Padova, Università degli Studi di Padova, Padova, Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131, Padova, Italy
- CIRCC-Consorzio Interuniversitario per le reattività chimiche e la catalisi, Unità di Padova, Università degli Studi di Padova, Padova, Italy
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
5
|
Both NF, Spannenberg A, Jiao H, Junge K, Beller M. Bis(N-Heterocyclic Carbene) Manganese(I) Complexes: Efficient and Simple Hydrogenation Catalysts. Angew Chem Int Ed Engl 2023; 62:e202307987. [PMID: 37395302 DOI: 10.1002/anie.202307987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
The use of bis(NHC) manganese(I) complexes 3 as catalysts for the hydrogenation of esters was investigated. For that purpose, a series of complexes has been synthesized via an improved two step procedure utilizing bis(NHC)-BEt3 adducts. By applying complexes 3 with KHBEt3 as additive, various aromatic and aliphatic esters were hydrogenated successfully at mild temperatures and low catalyst loadings, highlighting the efficiency of the novel catalytic system. The versatility of the developed catalytic system was further demonstrated by the hydrogenation of other substrate classes like ketones, nitriles, N-heteroarenes and alkenes. Mechanistic experiments and DFT calculations indicate an inner sphere mechanism with the loss of one CO ligand and reveal the role of BEt3 as cocatalyst.
Collapse
Affiliation(s)
- Niklas F Both
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Manganese(III) complexes with tetradentate O^C^C^O ligands: Synthesis, characterization and catalytic studies on the CO2 cycloaddition with epoxides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Mourão H, Gomes CSB, Realista S, Royo B. Visible Light‐Induced Catalytic Hydrosilylation of Ketones Mediated by Manganese NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henrique Mourão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| | - Clara S. B. Gomes
- LAQV‐REQUIMTE and UCIBIO‐Applied Molecular Biosciences Unit, Department of Chemistry, Campus de Caparica NOVA School of Science and Technology, NOVA University of Lisbon Caparica Portugal
- Associated Laboratory i4HB‐Institute for Health and Bioeconomy School of Science and Technology, NOVA University of Lisbon Caparica Portugal
| | - Sara Realista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
- Centro de Química Estrutural Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8 Lisboa Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| |
Collapse
|
8
|
Shi Y, Wang Y, Huang Z, Zhang F, Shao Y. t BuOLi-Promoted Hydroboration of Esters and Epoxides. ACS OMEGA 2022; 7:18876-18886. [PMID: 35694491 PMCID: PMC9178618 DOI: 10.1021/acsomega.2c01866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Commercially available and inexpensive lithium tert-butoxide ( t BuOLi) acts as a good precatalyst for the hydroboration of esters, lactones, and epoxides using pinacolborane as a borylation agent. Functional groups such as cyano-, nitro-, amino-, vinyl, and alkynyl are unaffected under the presented hydroboration process, representing high chemoselectivity. This transformation has also been effectively applied to the synthesis of key intermediates of Erlotinib and Cinacalcet. Preliminary investigations of the mechanism show that the hydroboration proceeds through the in situ formed BH3 species.
Collapse
Affiliation(s)
- Yinyin Shi
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yue Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhefan Huang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| | - Yinlin Shao
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
9
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
10
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Friães S, Realista S, Mourão H, Royo B. N‐Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Beatriz Royo
- Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier Av. da República 2780-157 Oeiras PORTUGAL
| |
Collapse
|
12
|
Chakraborty S, Das A, Mandal SK. Redox-active ligand based Mn(I)-catalyst for hydrosilylative ester reduction. Chem Commun (Camb) 2021; 57:12671-12674. [PMID: 34779467 DOI: 10.1039/d1cc05614j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein a Mn(I) catalyst bearing a redox-active phenalenyl (PLY) based ligand is reported for the efficient hydrosilylation of esters to alcohols using the inexpensive silane source polymethylhydrosiloxane (PMHS) under mild conditions. Mechanistic investigations suggest a strong ligand-metal cooperation where a ligand-based single electron transfer (SET) process initiates the reaction through Si-H bond activation.
Collapse
Affiliation(s)
- Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Pin-741246, Nadia, West Bengal, India.
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Pin-741246, Nadia, West Bengal, India.
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Pin-741246, Nadia, West Bengal, India.
| |
Collapse
|
13
|
Friães S, Realista S, Gomes CSB, Martinho PN, Royo B. Click-Derived Triazoles and Triazolylidenes of Manganese for Electrocatalytic Reduction of CO 2. Molecules 2021; 26:molecules26216325. [PMID: 34770734 PMCID: PMC8588546 DOI: 10.3390/molecules26216325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
A series of new fac-[Mn(L)(CO)3Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MIC^py, 1), triazolylidene-triazole (MIC^trz, 2), and triazole-pyridine (trz^py, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1–3 and complex fac-[Mn(MIC^MIC)(CO)3Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a N^N-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (−1.86 vs. −2.14 V).
Collapse
Affiliation(s)
- Sofia Friães
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
| | - Sara Realista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Department of Chemistry, Campus de Caparica, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- Associated Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paulo N. Martinho
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Centro de Química Estrutural, Campo Grande, Faculdade de Ciências Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
- Correspondence:
| |
Collapse
|
14
|
|
15
|
Ghosh P, Jacobi von Wangelin A. Manganese‐Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
16
|
Ghosh P, Jacobi von Wangelin A. Manganese-Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021; 60:16035-16043. [PMID: 33894033 PMCID: PMC8362021 DOI: 10.1002/anie.202103550] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Indexed: 12/29/2022]
Abstract
Reductive transformations of easily available oxidized matter are at the heart of synthetic manipulation and chemical valorization. The applications of catalytic hydrofunctionalization benefit from the use of liquid reducing agents and operationally facile setups. Metal‐catalyzed hydroborations provide a highly prolific platform for reductive valorizations of stable C=X electrophiles. Here, we report an especially facile, broad‐scope reduction of various functions including carbonyls, carboxylates, pyridines, carbodiimides, and carbonates under very mild conditions with the inexpensive pre‐catalyst Mn(hmds)2. The reaction could be successfully applied to depolymerizations.
Collapse
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | | |
Collapse
|
17
|
Antico E, Schlichter P, Werlé C, Leitner W. Reduction of Carboxylic Acids to Alcohols via Manganese(I) Catalyzed Hydrosilylation. JACS AU 2021; 1:742-749. [PMID: 34467330 PMCID: PMC8395667 DOI: 10.1021/jacsau.1c00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reduction of carboxylic acids to the respective alcohols, in mild conditions, was achieved using [MnBr(CO)5] as the catalyst and bench stable PhSiH3 as the reducing agent. It was shown that the reaction with the earth-abundant metal catalyst could be performed either with a catalyst loading as low as 0.5 mol %, rare with the use of [MnBr(CO)5], or on a gram scale employing only 1.5 equiv of PhSiH3, the lowest amount of silane reported to date for this transformation. Kinetic data and control experiments have provided initial insight into the mechanism of the catalytic process, suggesting that it proceeds via the formation of silyl ester intermediates and ligand dissociation to generate a coordinatively unsaturated Mn(I) complex as the active species.
Collapse
Affiliation(s)
- Emanuele Antico
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Peter Schlichter
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Christophe Werlé
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr
University Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| |
Collapse
|
18
|
Saito K, Ito T, Arata S, Sunada Y. Four‐Coordinated Manganese(II) Disilyl Complexes for the Hydrosilylation of Aldehydes and Ketones with 1,1,3,3‐Tetramethyldisiloxane. ChemCatChem 2020. [DOI: 10.1002/cctc.202001522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kyoka Saito
- Department of Applied Chemistry Faculty of Science and Engineering Chuo University 1-13-27 Kasuga Bunkyo-ku Tokyo Japan
| | - Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology (KISTEC) 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Shogo Arata
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Yusuke Sunada
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| |
Collapse
|