1
|
Tian JR, Qiao YH, Zhuang QB, Fan R, Li Z, Zhang XM, Zhang FM, Tu YQ. Organo-cation catalyzed enantioselective α-hydroxylation of pyridinone-fused lactones: asymmetric synthesis of SN-38 and irinotecan. Chem Commun (Camb) 2024; 60:9954-9957. [PMID: 39177032 DOI: 10.1039/d4cc03580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A catalytic asymmetric α-hydroxylation of pyridinone-fused lactones, containing the core structure of camptothecin, is described. Development of a novel spiropyrrolidine amide (SPA) derived triazolium bromide organo-cation catalyst is crucial for a highly enantioselective oxidation, which also accommodates a wide array of lactones with various substituents. The resulting tricyclic tertiary alcohol with an oxa-quaternary carbon center can be further applied in the synthesis of SN-38 and irinotecan, two anti-cancer drugs derived from camptothecin.
Collapse
Affiliation(s)
- Jin-Rui Tian
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yu-Hao Qiao
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Qing-Bo Zhuang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong Fan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhen Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
He Y, Yin H, Wang Y, Chu M, Li Y. Visible light-induced oxidative α-hydroxylation of β-dicarbonyl compounds catalyzed by ethylenediamine-copper(ii). RSC Adv 2023; 13:7843-7847. [PMID: 36909753 PMCID: PMC9996412 DOI: 10.1039/d2ra07411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
We have developed an efficient oxidative α-hydroxylation of β-keto esters with firstly using the structurally simple ethylenediamine-copper(ii) as a catalyst for β-keto esters activation and using visible light as the driving force for generating more active singlet oxygen (1O2) from triplet state oxygen (3O2) in the air, providing a series of α-hydroxy β-keto esters in excellent yields (up to 99%) under extremely low photosensitizer loading (0.01 mol%) and catalyst loading (1 mol%) within a short time. Moreover, the gram-scale synthesis showed the practical utility of this protocol.
Collapse
Affiliation(s)
- Yujie He
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 China
| | - Hao Yin
- Department of Green Chemistry and Technology, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yifeng Wang
- Department of Green Chemistry and Technology, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mingming Chu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 China
| | - Yiming Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 China
| |
Collapse
|
3
|
He H, Tummalapalli KSS, Zhu L, Chen M, Krishnamurthy S, Antilla JC. Asymmetric Rubottom-Type Oxidation Catalyzed by Chiral Calcium Phosphates. Chemistry 2023; 29:e202203720. [PMID: 36541518 DOI: 10.1002/chem.202203720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A highly efficient catalytic asymmetric Rubottom-type oxidation is described. Using meta-chloroperbenzoic acid (m-CPBA) as the oxidant and chiral calcium phosphate as the catalyst, the facile transformation enables direct hydroxylation of N-Boc oxindoles and β-ketoesters in high yields (up to 99 %) and in a highly enantioenriched fashion (up to >99 % ee). The application of the established method was demonstrated by the synthesis of a pharmaceutically important 3-hydroxyoxindole with excellent enantiocontrol.
Collapse
Affiliation(s)
- Hualing He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, P. R. China
| | | | - Linfei Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, P. R. China
| | - Minglei Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, P. R. China
| | - Suvratha Krishnamurthy
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, P. R. China
| | - Jon C Antilla
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, P. R. China
| |
Collapse
|
4
|
6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido. MOLBANK 2022. [DOI: 10.3390/m1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The salan zirconium complex of formula [(H2N2O2)ZrCl2] (H2N2O2H2 = HOPh’CH2NH(CH2)2NHCH2Ph’OH, where Ph’ = 2,4-(CMe2Ph)C6H2) was synthesized and fully characterized by NMR and single-crystal X-ray diffraction. The solid-state molecular structure of [(H2N2O2)ZrCl2] shows distorted octahedral geometry around the zirconium center with the salan ligand adopting a β-Λ-cis conformation.
Collapse
|
5
|
Hipólito J, Martins AM, Alves LG. Synthesis and Application of New Salan Titanium Complexes in the Catalytic Reduction of Aldehydes. Molecules 2022; 27:molecules27206821. [PMID: 36296413 PMCID: PMC9610537 DOI: 10.3390/molecules27206821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Complexes of formula [(H2N2O2)TiCl2] and [(H2N2O2)Ti(OiPr)2] (H2N2O2H2 = HOPh’CH2NH(CH2)2NHCH2Ph’OH, where Ph’ = 2,4-(CMe2Ph)C6H2) were synthesized by the reaction of the salan ligand precursor H2N2O2H2 with TiCl4 and Ti(OiPr)4, respectively, in high yields. The dichlorido complex [(H2N2O2)TiCl2] revealed to be an efficient catalyst for the reduction of benzaldehyde in toluene. Full conversion was observed after 24 h at 55 °C in THF. The same catalyst also converted phenylacetaldehyde and hydrocinnamaldehyde into the corresponding alkanes quantitatively.
Collapse
Affiliation(s)
- Joana Hipólito
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Ana M. Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Correspondence: (A.M.M.); (L.G.A.)
| | - Luis G. Alves
- Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Av. Rovisco Pais 1, 1049-003 Lisboa, Portugal
- Correspondence: (A.M.M.); (L.G.A.)
| |
Collapse
|
6
|
Yin H, Wang CJ, Zhao YG, He ZY, Chu MM, Wang YF, Xu DQ. Asymmetric bis(oxazoline)-Ni(II) catalyzed α-hydroxylation of cyclic β-keto esters under visible light. Org Biomol Chem 2021; 19:6588-6592. [PMID: 34023869 DOI: 10.1039/d1ob00546d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using visible light as a driving force and molecular oxygen as a green oxidant, we developed bis(oxazoline)-Ni(acac)2 catalyzed asymmetric α-hydroxylation of β-keto esters under low photosensitizer loading, and the protocol enabled an efficient transformation to provide the desired chiral α-hydroxy-β-keto esters in high yields (up to 99%) and enantioselectivities (up to 99% ee) at room temperature.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chao-Jie Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yu-Gen Zhao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zi-Yang He
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ming-Ming Chu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China.
| | - Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
7
|
Li B, Cheng X, Guan ZY, Li SY, Huo T, Cheng G, Fan YH, Zhou FS, Deng QH. Zinc-catalyzed asymmetric nitrooxylation of β-keto esters/amides with a benziodoxole-derived nitrooxy transfer reagent. Org Chem Front 2020. [DOI: 10.1039/d0qo01022g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc-catalyzed asymmetric nitrooxylation to afford a series of α-nitrooxy β-keto esters/amides in high yields and with low to moderate enantioselectivities has been disclosed.
Collapse
Affiliation(s)
- Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Xuan Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Zhen-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Si-Yuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| |
Collapse
|