1
|
Suri Babu U, Naveen Kumar M, Mahesh S, Nanubolu JB, Sridhar Reddy M. Pd-catalyzed ortho-/ meta-C-H-annulation of biphenyl amines with enynes through non-rollover cyclometallation. Org Biomol Chem 2025; 23:292-296. [PMID: 39552200 DOI: 10.1039/d4ob01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Annulations through dual C-H activation represent a powerful tool to selectively assemble multi-cyclic scaffolds. We present herein a palladium-catalyzed ortho-/meta-C-H-annulation of biphenyl amines with 1,6-enynes. This regioselective non-rollover cyclometallation was achieved through meticulous tuning of electronic factors of both the partners. This method is applicable to a wide range of protected o-arylanilines and enynes, and results in the regioselective preparation of benzo[f]isoindolyl derivatives in high yields with good diastereoselectivity (with respect to two types of stereogenic elements). Certain essential control experiments and kinetic isotope effect (KIE) studies were undertaken to elucidate the reaction mechanism, while subsequent transformations and a scale-up reaction were performed to substantiate the sturdiness of the transformation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shivunapuram Mahesh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
2
|
Zhu L, Zhu PW, Hu LY, Lin SY, Wu L, Zhu J. Electrochemically Enabled Hydroxyphosphorylation of 1,3-Enynes to Access Phosphinyl-Substituted Propargyl Alcohols. J Org Chem 2024; 89:10796-10804. [PMID: 39030172 DOI: 10.1021/acs.joc.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Catalytic difunctionalization with the direct activation of (O)P-H bonds has been recently established as a potentially robust platform to generate valuable organophosphorus compounds. In terms of 1,3-enynes, despite of the various catalytic methods developed for hydrophosphorylation, the radical-mediated hetero-functionalization of two different atoms has been less explored. In this study, we disclosed an electrochemically induced hydroxyphosphorylation of 1,3-enynes for the construction of phosphinyl-substituted propargyl alcohols. The system involves the direct activation of both arylphosphine oxides and oxygen in ambient air with no external metal or additive needed. The use of electrochemistry ensures the regioselective, atom-economic and eco-friendly for the difunctionalization process. This strategy highlights the advantages of mild reaction conditions, readily available starting materials and broad substrate scope, showing its practical synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- SINOPEC Jinling Company, NanJing 210033, P. R. China
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shao-Yan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
3
|
Rami F, Klinnert B, Nowak J, Ullwer F, Zheng M, Frey W, Plietker B. Reagent- and Ligand-Dependent Mechanistic Trichotomy in Fe-Catalyzed Borylative Cyclizations of Enynes. Org Lett 2024; 26:6370-6374. [PMID: 39051768 DOI: 10.1021/acs.orglett.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Based on some very recent results on Fe-catalyzed boron-source-dependent regiodivergent hydroborations of internal alkynes, we report here a boron-source-dependent but also ligand-dependent mechanistic trichotomy in borylative cyclizations. The choice of ligand plus boron source allows the synthesis of three isomeric borylative cyclization products starting from a common substrate and using the same precatalyst ((Ph3P)2Fe(CO)(NO)H) and sets the stage for the development of a unifying concept in Fe-catalyzed borylative cyclizations.
Collapse
Affiliation(s)
- Fabian Rami
- Institut für Organische Chemie, Fakultät Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Benedict Klinnert
- Professur für Organische Chemie I, Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| | - Jan Nowak
- Institut für Organische Chemie, Fakultät Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Franziska Ullwer
- Institut für Organische Chemie, Fakultät Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Min Zheng
- Institut für Organische Chemie, Fakultät Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
- Professur für Organische Chemie I, Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| | - Wolfgang Frey
- Institut für Organische Chemie, Fakultät Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Bernd Plietker
- Professur für Organische Chemie I, Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| |
Collapse
|
4
|
Buchbinder N, Nguyen LH, Beck ON, Bage AD, Slebodnick C, Santos WL. Chemo-, Regio-, and Stereoselective cis-Hydroboration of 1,3-Enynes: Copper-Catalyzed Access to ( Z,Z)- and ( Z,E)-2-Boryl-1,3-dienes. Org Lett 2024; 26:6136-6141. [PMID: 39018130 PMCID: PMC11287746 DOI: 10.1021/acs.orglett.4c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
A copper-catalyzed alkyne-selective hydroboration of 1,3-enynes is disclosed, providing access to the previously elusive 2-boryl-1,3-dienes. Using CuOAc, Xantphos, and HBpin, Bpin was installed on the internal carbon of a series of symmetric and nonsymmetric 1,3-enynes, affording products with excellent Z:E selectivity. The utility of the 2-boryl-1,3-diene products was demonstrated by transformation to useful functional groups.
Collapse
Affiliation(s)
- Nicklas
W. Buchbinder
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Long H. Nguyen
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Owen N. Beck
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Andrew D. Bage
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Li Z, Zhao J, Xue W, Tang J, Li S, Ge Y, Xu J, Zheng X, Li R, Chen H, Fu H. Efficient and selective external activator-free cobalt catalyst for hydroboration of terminal alkynes enabled by BiPyPhos. Org Biomol Chem 2024; 22:4455-4460. [PMID: 38764306 DOI: 10.1039/d4ob00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Herein, a robust catalyst system, composed of a bipyridine-based diphosphine ligand (BiPyPhos) and a cobalt precursor Co(acac)2, is successfully developed and applied in the hydroboration of terminal alkynes, exclusively affording various versatile β-E-vinylboronates in high yields at room temperature.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jiangui Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
6
|
Zhou J, Meng L, Yang Z, Wang JJ. Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400096. [PMID: 38477439 DOI: 10.1002/advs.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ziyi Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Zhang GT, Li G, Wan L, Pu X, Chang J, Tang P, Chen FE. Asymmetric Total Synthesis of Anti-HBV Drug Entecavir: Catalytic Strategies for the Stereospecific Construction of Densely Substituted Cyclopentene Cores. Org Lett 2024. [PMID: 38809781 DOI: 10.1021/acs.orglett.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation. By strategically integrating these three catalytic protocols, we established a practical pathway for acquiring valuable densely heteroatom-substituted cyclopentene cores.
Collapse
Affiliation(s)
- Guo-Tai Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gen Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Linxi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinxin Pu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junhai Chang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
8
|
Jia Y, Yang L, Wang X, Yang W, Zhao W. Cobalt-Catalyzed Selective Hydroboration of 1,3-Enynes with HBpin toward 1,3-Dienylboronate Esters. Org Lett 2024; 26:3258-3262. [PMID: 38568149 DOI: 10.1021/acs.orglett.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient cobalt-catalyzed selective hydroboration of 1,3-enynes with HBpin toward 1,3-dienylboronate esters is disclosed. With a commercially available catalytic system of Co(acac)2 and dppf, the hydroboration reactions proceeded well to afford a wide range of 1,3-dienylborates in moderate to high yields. This protocol features a cheap base-metal catalytic system, broad substrate scope, excellent selectivity, easy gram-scale preparation, and good functional group tolerance and provides access to synthetically valuable 1,3-dienylborates.
Collapse
Affiliation(s)
- Yining Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xueqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
9
|
Nad P, Mukherjee A. Metal-free C-H Borylation and Hydroboration of Indoles. ACS OMEGA 2023; 8:37623-37640. [PMID: 37867714 PMCID: PMC10586279 DOI: 10.1021/acsomega.3c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The C-H borylation and hydroboration reactions have emerged as promising synthetic tools to construct organoboron compounds. Organoboron compounds of N-heterocycles, particularly indole derivatives, have found widespread application in a variety of fields. As a result, considerable advancement in the area of C-H borylation and hydroboration reactions of indoles was observed in the last few decades. Among the various synthetic methods applied, the metal-free approach has received special attention. This mini-review discusses the recent progress in the area of C-H borylation and hydroboration reactions of indoles under metal-free conditions, their scope, and brief mechanistic studies.
Collapse
Affiliation(s)
- Pinaki Nad
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - Arup Mukherjee
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| |
Collapse
|
10
|
Szyling J, Szymańska A, Walkowiak J. Selective synthesis of boron-substituted enynes via a one-pot diboration/protodeboration sequence. Chem Commun (Camb) 2023; 59:9541-9544. [PMID: 37458472 DOI: 10.1039/d3cc02695g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient and facile one-pot protocol to access enynylboronates via a Pt-catalyzed diboration/protodeboration strategy has been developed. The reaction is suitable for various silylsubstituted symmetrical and unsymmetrical 1,3-diynes, leading to π-conjugated organoboron compounds with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Aleksandra Szymańska
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
11
|
Fang F, Zhang J. Notable Catalytic Activity of Transition Metal Thiolate Complexes against Hydrosilylation and Hydroboration of Carbon-Heteroatom Bonds. Chem Asian J 2023; 18:e202201181. [PMID: 36545848 DOI: 10.1002/asia.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chemists tend to use transition metal hydride complexes rather than thiolate complexes to catalyse chemical transformations because the hydride complexes possess diverse catalytic reactivity, although most of them are air/moisture-sensitive and difficult to prepare. By comparing the catalytic performances of pincer ligated group 10 metal thiolate and hydride complexes in catalysing the hydroboration and hydrosilylation of C=O and C=N bonds, we demonstrate in this review that transition metal thiolate complexes are much better catalysts than the corresponding hydride complexes in catalysing this type of reactions. Many hydroboration and hydrosilylation reactions catalysed by pincer ligated group 10 metal hydride complexes can also be catalysed by the corresponding thiolate complexes and the thiolate systems are far more active. Therefore, the applications of transition metal thiolate complexes in the catalytic hydroboration and hydrosilylation of unsaturated carbon-heteroatom bonds deserve special attention in future work.
Collapse
Affiliation(s)
- Fei Fang
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang, Henan, 453003, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and, Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
12
|
Wang G, Wang Y, Li Z, Li H, Yu M, Pang M, Zhao X. Gold-Catalyzed Cyclization/Hydroboration of 1,6-Enynes: Synthesis of Bicyclo[3.1.0]hexane Boranes. Org Lett 2022; 24:9425-9430. [PMID: 36524751 DOI: 10.1021/acs.orglett.2c03812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The gold-catalyzed cyclization/hydroboration of 1,6-enynes offers facile, versatile, and atom-economical one-step access to bicyclo[3.1.0]hexane boranes. This new protocol proceeds in moderate to good yields under mild conditions. Different from bicyclo[3.1.0]hexane borates, these products are stable in air and during chromatography. Moreover, the borane moiety of the products can readily undergo a diverse array of transformations. The kinetic isotope effect experiment indicates that the hydrogen-transfer step is a fast process, which is not involved in the rate-limiting step.
Collapse
Affiliation(s)
- Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yongqiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zengzeng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haotian Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Maofu Pang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
13
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium-Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022; 61:e202204319. [PMID: 35596681 DOI: 10.1002/anie.202204319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Disclosed here is the first geminal (gem-) hydroborative cyclization of enynes. Different from known hydroborative cyclizations, this process adds hydrogen and boron to the same position, leading to a new reaction mode. With [Cp*RuCl]4 as catalyst, a range of gem-hydroborated bicyclic products bearing a cyclopropane unit could be rapidly assembled from simple enyne substrates. Control experiments and density functional theory (DFT) calculations provided important insights into the reaction mechanism. Notably, two major competing pathways may operate with substrate-dependence. 1,6-Enynes favor initial oxidative cyclometalation to form a ruthenacyclopentene intermediate prior to engaging hydroborane, while other enynes (e.g., 1,7-enynes) that lack strong propensity toward cyclization prefer initial alkyne gem-(H,B)-addition to form an α-boryl ruthenium carbene followed by intramolecular olefin cyclopropanation. This process also represents the first ruthenium-catalyzed enyne hydroborative cyclization.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
14
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium‐Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun-Xuan Tan
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Shijia Li
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Lijuan Song
- Harbin Institute of Technology Shenzhen School of Science CHINA
| | - Xinhao Zhang
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Yun-Dong Wu
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Jianwei Sun
- Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay Hong Kong HONG KONG
| |
Collapse
|
15
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
16
|
Xie XY, Xu YF, Li Y, Wang XD, Zhu J, Wu L. Radical modulated regioselective difunctionalization of vinyl enynes: tunable access to naphthalen-1(2 H)-ones and allenic alcohols. Chem Commun (Camb) 2022; 58:3031-3034. [PMID: 35156673 DOI: 10.1039/d1cc06994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient radical-modulated difunctionalization of vinyl enynes has been disclosed using TEMPO as a radical regulator. Facile access to structurally diverse 3-bromo-naphthalen-1(2H)-ones and 4-bromo-allenic alcohols was realized via 1,2-addition/1,2-migration or 1,4-addition, respectively. This protocol represents the first example of radical-modulated metal-free difunctionalization of 1,3-enynes with high regioselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun-Fang Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. .,College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P. R. China
| |
Collapse
|
17
|
Okazaki S, Shimada K, Komine N, Hirano M. Ru(0)-Catalyzed Regioselective Synthesis of Borylated-1,4- and -1,5-Diene Building Blocks. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shione Okazaki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keita Shimada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
19
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|
20
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
21
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|
22
|
Kuramochi A, Komine N, Kiyota S, Hirano M. Ru(0)-Catalyzed Synthesis of Borylated-Conjugated Triene Building Blocks by Cross-Dimerization and Their Use in Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayumi Kuramochi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|