1
|
Luo X, Hou P, Shen J, Kuang Y, Sun F, Jiang H, Gooßen LJ, Huang L. Ligand-enabled ruthenium-catalyzed meta-C-H alkylation of (hetero)aromatic carboxylic acids. Nat Commun 2024; 15:5552. [PMID: 38956019 PMCID: PMC11219896 DOI: 10.1038/s41467-024-49362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Carboxylates are ideal directing groups because they are widely available, readily cleavable and excellent linchpins for diverse follow-up reactions. However, their use in meta-selective C-H functionalizations remains a substantial unmet catalytic challenge. Herein, we report the ruthenium-catalyzed meta-C-H alkylation of aromatic carboxylic acids with various functionalized alkyl halides. A bidentate N-ligand increases the electron density at the metal center of ortho-benzoate ruthenacycles to the extent that single-electron reductions of alkyl halides can take place. The subsequent addition of alkyl radicals is exclusively directed to the position para to the CAr-Ru bond, i.e., meta to the carboxylate group. The resulting catalytic meta-C-H alkylation extends to a wide range of (hetero)aromatic carboxylic acids including benzofused five-membered ring heteroarenes but no pyridine derivatives in combination with secondary/tertiary alkyl halides, including fluorinated derivatives. It also allows site-selective C5-H alkylation of 1-naphthoic acids. The products are shown to be synthetic hubs en route to meta-alkylated aryl ketones, nitriles, amides, esters and other functionalized products.
Collapse
Affiliation(s)
- Xianglin Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Peichao Hou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jiayi Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Yifeng Kuang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Fengchao Sun
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Lukas J Gooßen
- Ruhr-Universität Bochum Lehrstuhl für Organische Chemie, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
2
|
Wang QD, Liu X, Zheng YW, Wu YS, Zhou X, Yang JM, Shen ZL. Iron-Mediated Reductive Amidation of Triazine Esters with Nitroarenes. Org Lett 2024; 26:416-420. [PMID: 38160397 DOI: 10.1021/acs.orglett.3c04180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A reductive amidation of triazine esters with nitroarenes by using cheap iron as a reducing metal in the presence of TMSCl in DMF was developed. The reactions proceeded efficiently under transition metal-free conditions to give the corresponding amides in moderate to good yields with good functional group compatibility. Preliminary mechanistic investigations indicated that nitrosobenzene, N-phenyl hydroxylamine, azoxybenzene, azobenzene, aniline, and N-arylformamide possibly served as the intermediates of the reaction.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Xiang Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ya-Wen Zheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan-Shuai Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Joshi A, Iqbal Z, Kandwal P, De SR. Pd(II)–Catalyzed Non–Directed Benzylic C(sp3)–H Activation: Cascade C(sp3)–S Bond Cleavage to Access Benzaldehydes from Benzylphenyl Sulfides and Sulfoxides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Asha Joshi
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Zafar Iqbal
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Pankaj Kandwal
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Dept. of Chemistry Srinagar Garhwal 246174 Srinagar INDIA
| |
Collapse
|
5
|
Nie Z, Yang T, Su M, Luo WP, Liu Q, Guo CC. One‐Step Synthesis of Arylacetaldehydes from Aryl aldehydes or Diaryl ketones via One‐Carbon Extension by Using the System of DMSO/KOH/Zinc. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Abstract
Recent advances in partial reductions of inert carboxylic acids and their derivatives to active aldehydes are reviewed.
Collapse
Affiliation(s)
- Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Liu Y, Mo X, Majeed I, Zhang M, Wang H, Zeng Z. An Efficient and Straightforward Approach for Accessing Thioesters via Palladium-Catalyzed C-N Cleavage of Thioamides. Org Biomol Chem 2022; 20:1532-1537. [DOI: 10.1039/d1ob02349g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first report the coupling of activated thioamides with alcohols to efficiently form thioesters via palladium-catalyzed C-N cleavage strategy. The new approach employs the thioamides as thioacylating reagent to give...
Collapse
|
8
|
Zhang Y, Ye X, Liu S, Chen W, Majeed I, Liu T, Zhu Y, Zeng Z. NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds. Org Biomol Chem 2021; 19:8566-8571. [PMID: 34550144 DOI: 10.1039/d1ob01409a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Xiaojing Ye
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Sicheng Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Irfan Majeed
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Tingting Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Yulin Zhu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Zhuo Zeng
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China. .,Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, China
| |
Collapse
|