1
|
Guo X, Price NG, Zhu Q. Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple. Org Lett 2024; 26:7347-7351. [PMID: 39185852 DOI: 10.1021/acs.orglett.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.
Collapse
Affiliation(s)
- Xuewen Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan G Price
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qilei Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
3
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
4
|
Polyaromatic Group Embedded Cd(II)-Coordination Polymers for Microwave-Assisted Solvent-Free Strecker-Type Cyanation of Acetals. Molecules 2023; 28:molecules28030945. [PMID: 36770613 PMCID: PMC9919643 DOI: 10.3390/molecules28030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
In this work, two new 1D Cd(II) coordination polymers (CPs), [Cd(L1)(NMF)2]n (1) and [Cd(L2)(DMF)(H2O)2]n·n(H2O) (2), have been synthesized, characterized and employed as catalysts for the microwave-assisted solvent-free Strecker-type cyanation of different acetals. Solvothermal reaction between the pro-ligand, 5-{(pyren-1-ylmethyl)amino}isophthalic acid (H2L1) or 5-{(anthracen-9-ylmethyl)amino}isophthalic acid (H2L2), and Cd(NO3)2.6H2O in the presence of NMF or DMF:THF solvent, produces the coordination polymer 1 or 2, respectively. These frameworks were characterized by single-crystal and powder X-ray diffraction analyses, ATR-FTIR, elemental and thermogravimetry analysis. Their structural analysis revealed that both CPs show one-dimensional structures, but CP 1 has a 1D double chain type structure whereas CP 2 is a simple one-dimensional network. In CP 1, the dinuclear {Cd2(COO)4} unit acts as a secondary building unit (SBU) and the assembly of dinuclear SBUs with deprotonated ligand (L12-) led to the formation of a 1D double chain framework. In contrast, no SBU was observed in CP 2. To test the catalytic effectiveness of these 1D compounds, the solvent-free Strecker-type cyanation reactions of different acetals in presence of trimethylsilyl cyanide (TMSCN) was studied with CPs 1 and 2 as heterogenous catalysts. CP 1 displays a higher activity (yield 95%) compared to CP 2 (yield 84%) after the same reaction time. This is accounted for by the strong hydrogen bonding packing network in CP 2 that hampers the accessibility of the metal centers, and the presence of the dinuclear Cd(II) SBU in CP 1 which can promote the catalytic process in comparison with the mononuclear Cd(II) center in CP 2. Moreover, the recyclability and heterogeneity of both CPs were tested, demonstrating that they can be recyclable for at least for four cycles without losing their structural integrity and catalytic activity.
Collapse
|
5
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|
6
|
Radhika S, Baby Aleena M, Anilkumar G. A Green Aerobic Fe(lll) Catalyzed Base-Free Synthesis of 2-Aminobenzothiazoles in Water. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Kumar GS, Shinde PS, Chen H, Muralirajan K, Kancherla R, Rueping M. Paired Electrolysis for Decarboxylative Cyanation: 4-CN-Pyridine, a Versatile Nitrile Source. Org Lett 2022; 24:6357-6363. [PMID: 36036921 DOI: 10.1021/acs.orglett.2c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A decarboxylative cyanation of amino acids under paired electrochemical reaction conditions has been developed. 4-CN-pyridine was found to be a new and effective cyanation reagent under catalyst-free conditions. Mechanistic studies support a nucleophilic reaction pathway, and the cyanation protocol can be applied to diverse substrates including N,N-dialkyl aniline and indole derivatives.
Collapse
Affiliation(s)
- Gadde Sathish Kumar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Prashant S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Guo MM, Song XD, Liu X, Zheng YW, Chu XQ, Rao W, Shen ZL. Iron(III)‐catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Aneeja T, Afsina CMA, Saranya PV, Anilkumar G. Recent advances and perspectives in ruthenium-catalyzed cyanation reactions. Beilstein J Org Chem 2022; 18:37-52. [PMID: 35047081 PMCID: PMC8744463 DOI: 10.3762/bjoc.18.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
The cyanation reaction has achieved rapid progress in recent times. The ability to exhibit multiple oxidation states increased the demand of ruthenium in the field of catalysis. These cyanation reactions have wide application in pharmacological and biological fields. This review gives an overview of the ruthenium-catalyzed cyanation reactions covering literature up to 2021.
Collapse
Affiliation(s)
- Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, 686560, India
| | | | - Padinjare Veetil Saranya
- School of Chemical Sciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, 686560, India
| |
Collapse
|
10
|
Karmakar A, Paul A, Santos PMR, Santos IRM, Guedes da Silva MFC, Pombeiro AJL. Designing and Construction of Polyaromatic Group Containing Cd(II)-based Coordination Polymers for Solvent-free Strecker-type Cyanation of Acetals. NEW J CHEM 2022. [DOI: 10.1039/d2nj00168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we have synthesized and characterized two novel Cd(II) coordination polymers, [Cd4(L1)4(DMF)6]n.3n(DMF) (1) and [Cd2(L2)2(DMF)3]n.2n(DMF) (2), and studied their catalytic application. They were synthesized via solvothermal reaction...
Collapse
|
11
|
Klein-Heßling C, Blockhaus T, Sünkel K. Serendipitous formation of the first η5-tricyanocyclopentadienyl complex. Crystal and molecular structures of [{C5H4-X(CN) }Mn(CO)2PPh3] (X = Br, CN; n = 1, 2). Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Maity S, Gupta SK, Panda N. Iron(II)‐catalyzed Oxidative Coupling of Vicinal Diols and 2‐Amino‐1,4‐naphthoquinone for the Synthesis of Pyrrolonaphthoquinones and Furanonaphthoquinones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sujit Maity
- Department of Chemistry National Institute of Technology, Rourkela Rourkela-769008, Odisha India
| | - Sandip Kumar Gupta
- Department of Chemistry National Institute of Technology, Rourkela Rourkela-769008, Odisha India
| | - Niranjan Panda
- Department of Chemistry National Institute of Technology, Rourkela Rourkela-769008, Odisha India
| |
Collapse
|
13
|
Fairoosa J, Shamna S, Neetha M, Anilkumar G. An overview of microwave assisted cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Salahudeen Shamna
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
14
|
Liang J, Fu Y, Bao X, Ou L, Sang T, Yuan Y, Huo C. Cyanation of glycine derivatives. Chem Commun (Camb) 2021; 57:3014-3017. [PMID: 33623936 DOI: 10.1039/d0cc08126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a catalytic oxidative C-H cyanation of glycine derivatives using a simple copper(i) catalyst with NFSI as an oxidant via a radical process to furnish α-cyano glycine derivatives, which are useful intermediates for organic synthesis. CuCl acted as both a one-electron reductant and a transition-metal catalyst in this transformation. NFSI served as a one-electron oxidant and generated a N-centered radical as a H-abstractor. The reaction displayed broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Jia Liang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Yilmaz O, Dengiz C, Emmert MH. Iron-Catalyzed α-C-H Cyanation of Simple and Complex Tertiary Amines. J Org Chem 2021; 86:2489-2498. [PMID: 33464080 DOI: 10.1021/acs.joc.0c02642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This manuscript details the development of a general and mild protocol for the α-C-H cyanation of tertiary amines and its application in late-stage functionalization. Suitable substrates include tertiary aliphatic, benzylic, and aniline-type substrates and complex substrates. Functional groups tolerated under the reaction conditions include various heterocycles and ketones, amides, olefins, and alkynes. This broad substrate scope is remarkable, as comparable reaction protocols for α-C-H cyanation frequently occur via free radical mechanisms and are thus fundamentally limited in their functional group tolerance. In contrast, the presented catalyst system tolerates functional groups that typically react with free radicals, suggesting an alternative reaction pathway. All components of the described catalyst system are readily available, allowing implementation of the presented methodology without the need for lengthy catalyst synthesis.
Collapse
Affiliation(s)
- Ozgur Yilmaz
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States.,Department of Chemistry, Faculty of Arts and Sciences, Mersin University, 33343 Mersin, Turkey
| | - Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Marion H Emmert
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States.,Process Research & Development, MRL, Merck & Co. Inc, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|